(1)设t秒时两点相遇.则有.解得t=8.答:(略)--4分 知.点N一直在AD上运动.所以当点M运动到BC边上的时候.点A.E.M.N才可能组成平行四边形.设:经过t秒.四点可组成平行四边形.分两种情形:--1分 a. 解得t=2 --4分 b. 解得t=6 --4分 答:第2秒或6秒钟时.点A.E.M.N组成平行四边形.--1分 查看更多

 

题目列表(包括答案和解析)

(2012•宁波一模)在正方形ABCD中,O是AD的中点,点P从A点出发沿A→B→C→D的路线匀速运动,移动到点D时停止.
(1)如图1,若正方形的边长为12,点P的运动速度为2单位长度/秒,设t秒时,正方形ABCD与∠POD重叠部分的面积为y.
①求当t=4,8,14时,y的值.
②求y关于t的函数解析式.
(2)如图2,若点Q从D出发沿D→C→B→A的路线匀速运动,移动到点A时停止.P、Q两点同时出发,点P的速度大于点Q的速度.设t秒时,正方形ABCD与∠POQ(包括边缘及内部)重叠部分的面积为S,S与t的函数图象如图3所示.
①P,Q两点在第
4
4
秒相遇;正方形ABCD的边长是
4
4

②点P的速度为
2
2
单位长度/秒;点Q的速度为
1
1
单位长度/秒.
③当t为何值时,重叠部分面积S等于9?

查看答案和解析>>

在正方形ABCD中,O是AD的中点,点P从A点出发沿A→B→C→D的路线匀速运动,移动到点D时停止.
(1)如图1,若正方形的边长为12,点P的运动速度为2单位长度/秒,设t秒时,正方形ABCD与∠POD重叠部分的面积为y.
①求当t=4,8,14时,y的值.
②求y关于t的函数解析式.
(2)如图2,若点Q从D出发沿D→C→B→A的路线匀速运动,移动到点A时停止.P、Q两点同时出发,点P的速度大于点Q的速度.设t秒时,正方形ABCD与∠POQ(包括边缘及内部)重叠部分的面积为S,S与t的函数图象如图3所示.
①P,Q两点在第______秒相遇;正方形ABCD的边长是______
②点P的速度为______单位长度/秒;点Q的速度为______单位长度/秒.
③当t为何值时,重叠部分面积S等于9?

查看答案和解析>>

在正方形ABCD中,O是AD的中点,点P从A点出发沿A→B→C→D的路线匀速运动,移动到点D时停止。

(1)如图1,若正方形的边长为12,点P的运动速度为2单位长度/秒,设t秒时,正方形ABCD与∠POD重叠部分的面积为y。

①求当t=4,8,14时,y的值。

②求y关于t的函数解析式。

(2)如图2,若点Q从D出发沿D→C→B→A的路线匀速运动,移动到点A时停止。P、Q两点同时出发,点P的速度大于点Q的速度。设t秒时,正方形ABCD与∠POD(包括边缘及内部)重叠部分的面积为S,S与t的函数图像如图3所示。

①P,Q两点在第           秒相遇;正方形ABCD的边长是         

②点P的速度为         单位长度/秒;点Q的速度为          

③当t为何值时,重叠部分面积S等于9?

查看答案和解析>>

在正方形ABCD中,O是AD的中点,点P从A点出发沿A→B→C→D的路线匀速运动,移动到点D时停止。

(1)如图1,若正方形的边长为12,点P的运动速度为2单位长度/秒,设t秒时,正方形ABCD与∠POD重叠部分的面积为y。

①求当t=4,8,14时,y的值。

②求y关于t的函数解析式。

(2)如图2,若点Q从D出发沿D→C→B→A的路线匀速运动,移动到点A时停止。P、Q两点同时出发,点P的速度大于点Q的速度。设t秒时,正方形ABCD与∠POD(包括边缘及内部)重叠部分的面积为S,S与t的函数图像如图3所示。

①P,Q两点在第           秒相遇;正方形ABCD的边长是         

②点P的速度为         单位长度/秒;点Q的速度为          

③当t为何值时,重叠部分面积S等于9?

查看答案和解析>>

在正方形ABCD中,O是AD的中点,点P从A点出发沿A→B→C→D的路线匀速运动,移动到点D时停止.
(1)如图1,若正方形的边长为12,点P的运动速度为2单位长度/秒,设t秒时,正方形ABCD与∠POD重叠部分的面积为y.
①求当t=4,8,14时,y的值.
②求y关于t的函数解析式.
(2)如图2,若点Q从D出发沿D→C→B→A的路线匀速运动,移动到点A时停止.P、Q两点同时出发,点P的速度大于点Q的速度.设t秒时,正方形ABCD与∠POQ(包括边缘及内部)重叠部分的面积为S,S与t的函数图象如图3所示.
①P,Q两点在第______秒相遇;正方形ABCD的边长是______
②点P的速度为______单位长度/秒;点Q的速度为______单位长度/秒.
③当t为何值时,重叠部分面积S等于9?

查看答案和解析>>


同步练习册答案