若椭圆+y2=1的焦点在x轴上.长轴长是短轴长的两倍.则椭圆的离心率为 查看更多

 

题目列表(包括答案和解析)

若椭圆=1的焦点在x轴上,过点(1,)作圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是________.

查看答案和解析>>

若椭圆=1的焦点在x轴上,过点(1,)作圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是________

查看答案和解析>>

若椭圆=1的焦点在x轴上,过点(1,)作圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是________.

查看答案和解析>>

已知圆O:x2+y2=2交x轴于AB两点,曲线C是以AB为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点,连结PF,过原点O作直线PF的垂线交直线l:x=-2于点Q

(Ⅰ)求椭圆C的标准方程;

()若点P的坐标为(1,1),求证:直线PQ与圆O相切;

(Ⅲ)试探究:当点P在圆O上运动时(不与AB重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.

查看答案和解析>>

已知圆O:x2+y2=2交x轴于AB两点,曲线C是以AB为长轴,离心率为的椭圆,其左焦点为F.P是圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若点P的坐标为(1,1),求证:直线PQ与圆O相切;

(Ⅲ)试探究:当点P在圆O上运动时(不与AB重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.

查看答案和解析>>


同步练习册答案