二次函数由特殊到一般.可分为以下几种形式:①,②,③,④,⑤. 查看更多

 

题目列表(包括答案和解析)

自来水公司整齐地堆放着许多自来水管,如图1所示,小明同学在研究每层自来水管的最高点离地面的距离d与层数n之间的关系时,采用了“由少至多,由特殊到一般”的数学方法,如图2所示.(自来水管口的半径为r)
请你与小明共同探索:
(1)分别求出n=1,2,3,4时的d值;
(2)你发现了什么写出用n表示d的关系式.
精英家教网

查看答案和解析>>

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.
比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:
22×23=25,23×24=27,22×26=28,…?2m×2n=2m+n,…?am×an=am+n(m、n都是正整数).我们亦知:
2
3
2+1
3+1
2
3
2+2
3+2
2
3
2+3
3+3
2
3
2+4
3+4
,…
(1)请你根据上面的材料归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式;
(2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”;
(3)如图,在Rt△ABC中,∠C=90°,CB=a,CA=b,AD=BE=c(a>b),能否根据这个图形提炼出与(1)中相精英家教网同的关系式并给予证明.

查看答案和解析>>

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.
比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:22×23=25,23×24=27,22×26=28…?2m×2n=2m+n…?am×an=am+n(m、n都是正整数).
我们亦知:
2
3
2+1
3+1
2
3
2+2
3+2
2
3
2+3
3+3
2
3
2+4
3+4

(1)请你根据上面的材料归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式.
(2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”.

查看答案和解析>>

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.
比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:22×23=25,23×24=27,22×26=28,…?2m×2n=2m+n,…?am×an=am+n(m、n都是正整数).
探索问题:
(1)比较下列各组数据的大小:
2
3
2+1
3+1
,②
2
3
2+2
3+2
,③
2
3
2+3
3+3
,④
2
3
2+4
3+4
,….
(2)请你根据上面的材料归纳出a、b、c(a>b>0,c>0)之间的一个数学关系式;并用已学的数学知识说明你发现结论的正确性.
(3)试用(2)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”.

查看答案和解析>>

在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征。

比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的: 22×23=25,23×24=27,22×26=28,…

2m×2n=2m+n,…am×anam+n(mn都是正整数)。探索问题:

(1)比较下列各组数据的大小:

     ,  ②    ,  ③     ,   ④    ,…。

(2)请你根据上面的材料归纳出abc(ab>0,c>0)之间的一个数学关系式;并用已学的数学知识说明你发现结论的正确性.

(3)试用(2)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”;

 

查看答案和解析>>


同步练习册答案