2.掌握正方形的性质定理. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的中点,阅读下列材料,
(1)连接AC、BD,由三角形中位线的性质定理可证四边形EFGH是
 

(2)对角线AC、BD满足条件
 
时,四边形EFGH是矩形;
(3)对角线AC、BD满足条件
 
时,四边形EFGH是菱形;
(4)对角线AC、BD满足条件
 
时,四边形EFGH是正方形.

查看答案和解析>>

【考点】切线的性质;圆周角定理.

【专题】计算题.

【分析】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示,由PA与PB都为圆O的切线,利用切线的性质得到OA与AP垂直,OB与BP垂直,在四边形APOB中,根据四边形的内角和求出∠AOB的度数,再利用同弧所对的圆周角等于所对圆心角的一半求出∠ADB的度数,再根据圆内接四边形的对角互补即可求出∠ACB的度数.

【解答】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),

连接BD,AD,如图所示:

∵PA、PB是⊙O的切线,

∴OA⊥AP,OB⊥BP,

∴∠OAP=∠OBP=90°,又∠P=40°,

∴∠AOB=360°-(∠OAP+∠OBP+∠P)=140°,

∵圆周角∠ADB与圆心角∠AOB都对弧AB,

∴∠ADB=∠AOB=70°,

又∵四边形ACBD为圆内接四边形,

∴∠ADB+∠ACB=180°,

则∠ACB=110°.

故选B。

【点评】此题考查了切线的性质,圆周角定理,圆内接四边形的性质,以及四边形的内角和,熟练掌握切线的性质是解本题的关键

查看答案和解析>>

8、小华在整理平行四边形、矩形、菱形、正方形的性质时,发现它们的对角线都具有同一性质是(  )

查看答案和解析>>

圆的切线的性质定理是
圆的切线垂直于过切点的直径
圆的切线垂直于过切点的直径

查看答案和解析>>

甲:两直线平行,同位角相等.
乙:同位角相等,两直线平行.
以上两结论中
 
是平行线的判定定理,
 
是平行线的性质定理.

查看答案和解析>>


同步练习册答案