理解等腰梯形的性质并会运用其解决有关问题. 查看更多

 

题目列表(包括答案和解析)

22、完成以下证明,并在括号内填写理由:
已知:如图所示,在等腰梯形ABCD中,AD∥BC,AB=CD,∠1=∠2.
求证:BE=CE
证明:∵等腰梯形ABCD中,AD∥BC,AB=CD(已知)
∴∠B=∠
C
等腰梯形的性质

在△
ABE
和△
DCE

∠1=∠2
AB=CD
∠B=∠C
∴△
ABE
≌△
DCE
ASA

∴BE=CE(
全等三角形的性质

查看答案和解析>>

25、证明题:(1)等腰梯形的对角线交点与同一底的两个端点的距离相等.
已知:如图,等腰梯形ABCD,BC=AD,两对角线相交于O点.
求证:OA=OB.
证明:∵在△ACD与△BDC中
BC=AD(
等腰梯形的性质

∠ADC=∠BCD(
等腰梯形的性质

CD=CD
(公共边)
∴△ACD≌△BDC(
SAS

∴∠1=∠2  (
全等的性质

又∵∠DAB=∠ABC(等腰梯形的性质)
∴∠DAB-∠1=∠ABC-∠2
即:∠3=∠4(
等价代换

OA=OB
( 等角对等边)
(2)已知:如图,△ABC中BE为∠B的角平分线DE∥BC.求证:BD=DE.

查看答案和解析>>

2、下列不是等腰梯形的性质的是(  )

查看答案和解析>>


同步练习册答案