20.已知x 轴上有两点A(x1.0).B(x2.0).在y 轴上有一点C.x1.x2 是方程x2-m2x-5=0的两个根.且=26.△ABC 的面积是9.(1)求A.B.C 三点的坐标,(2)求过A.B.C 三点的抛物线的解析式. [解](1)∵ x1+x2=m2.x1x2=-5. ∴ =(x1+x2 )2-2 x1x2=m4+10=26. ∴ m2=4.则方程为x2-4 x-5=0. 故x1=5.x2=-1. ∴ A.B(5.0)或A(5.0).B. 设C点坐标为(0.c). ∵ AB==6.S△ABC=AB·|h|=9. ∴ h=±3. ∴ C. (2)抛物线的解析式为 y=-+x+3或y=-x-3. 查看更多

 

题目列表(包括答案和解析)

已知抛物线y=x2-(2m-1)x+4m-6.
(1)试说明对于每一个实数m,抛物线都经过x轴上的一个定点;
(2)设抛物线与x轴的两个交点A(x1,0)和B(x2,0)(x1<x2)分别在原点的两侧,且A、B两点间的距离小于6,求m的取值范围;
(3)抛物线的对称轴与x轴交于点C数学公式,在(2)的条件下,试判断是否存在m的值,使经过点C及抛物线与x轴的一个交点的⊙M与y轴的正半轴相切于点D,且被x轴截得的劣弧与数学公式是等弧?若存在,求出所有满足条件的m的值;若不存在,说明理由.

查看答案和解析>>

如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0),B(0,1)、C(d,2)
(1)求d的值;
(2)将△ABC沿x轴的正方向平移,在第一象限内B,C两点的对应点B′,C′正好落在某反比例函数图象上,请求出这个反比例函数和此时的直线B′C′的解析式;
(3)在(2)的条件下,直线B′C′交y轴于点G,问是否存在x轴上的点M和反比例函数图象上的P,使得四边形PGMC′是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.
友情提示:已知P(x1,y1),Q (x2,y2),线段PQ的中点坐标(
x1+x2
2
y1+y2
2

查看答案和解析>>

作业宝如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0),B(0,1)、C(d,2)
(1)求d的值;
(2)将△ABC沿x轴的正方向平移,在第一象限内B,C两点的对应点B′,C′正好落在某反比例函数图象上,请求出这个反比例函数和此时的直线B′C′的解析式;
(3)在(2)的条件下,直线B′C′交y轴于点G,问是否存在x轴上的点M和反比例函数图象上的P,使得四边形PGMC′是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.
友情提示:已知P(x1,y1),Q (x2,y2),线段PQ的中点坐标(数学公式

查看答案和解析>>

(2004•济宁)已知抛物线y=x2-(2m-1)x+4m-6.
(1)试说明对于每一个实数m,抛物线都经过x轴上的一个定点;
(2)设抛物线与x轴的两个交点A(x1,0)和B(x2,0)(x1<x2)分别在原点的两侧,且A、B两点间的距离小于6,求m的取值范围;
(3)抛物线的对称轴与x轴交于点C,在(2)的条件下,试判断是否存在m的值,使经过点C及抛物线与x轴的一个交点的⊙M与y轴的正半轴相切于点D,且被x轴截得的劣弧与是等弧?若存在,求出所有满足条件的m的值;若不存在,说明理由.

查看答案和解析>>

(2004•济宁)已知抛物线y=x2-(2m-1)x+4m-6.
(1)试说明对于每一个实数m,抛物线都经过x轴上的一个定点;
(2)设抛物线与x轴的两个交点A(x1,0)和B(x2,0)(x1<x2)分别在原点的两侧,且A、B两点间的距离小于6,求m的取值范围;
(3)抛物线的对称轴与x轴交于点C,在(2)的条件下,试判断是否存在m的值,使经过点C及抛物线与x轴的一个交点的⊙M与y轴的正半轴相切于点D,且被x轴截得的劣弧与是等弧?若存在,求出所有满足条件的m的值;若不存在,说明理由.

查看答案和解析>>


同步练习册答案