理解:定理的实质是把正多边形的问题向直角三角形转化. 由于这些直角三角形的斜边都是正n边形的半径R.一条直角边是正n边形的边心距rn.另一条直角边是正n边形边长an的一半.一个锐角是正n边形中心角 的一半.即 .所以.根据上面定理就可以把正n边形的有关计算归结为解直角三角形问题. 查看更多

 

题目列表(包括答案和解析)

先阅读,后探究相关的问题
【阅读】|5-2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看做|5-(-2)|,表示5与-2的差的绝对值,也可理解为5与-2两数在数轴上所对应的两点之间的距离.
(1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为
-2.5
-2.5
1
1
,B,C两点间的距离是
3.5
3.5

(2)数轴上表示x和-1的两点A和B之间的距离表示为
.
x-(-1)amp; 
 amp; 
.
.
x-(-1)amp; 
 amp; 
.
;如果|AB|=3,那么x为
-4,2
-4,2

(3)若点A表示的整数为x,则当x为
-1
-1
时,|x+4|与|x-2|的值相等;
(4)要使代数式|x+5|+|x-2|取最小值时,相应的x的取值范围是
-5≤x≤2
-5≤x≤2

查看答案和解析>>

我国著名数学家苏步青在访问德国时,德国一位数学家给他出了这样一道题目:
甲、乙二人相对而行,他们相距10千米,甲每小时走3千米,乙每小时走2千米,甲带着一条狗,狗每小时跑5千米,狗跑得快,它同甲一起出发,碰到乙的时候向甲跑去,碰到甲的时候又向乙跑去,问当甲、乙两人相遇时,这条狗一共跑了多少千米?
苏步青教授很快就解出了这道题目.同学们,你知道他是怎么解的吗?
这道题最让人迷惑不解的是甲身边的那条狗.如果我们先计算狗从甲的身边跑到乙的身边的路程s,再计算狗从乙的身边跑到甲的身边的路程s,…,显然把狗跑的路程相加,这样很繁琐,笨拙且不易计算.苏教授从整体着眼,根据甲、乙出发到相遇经历的时间与狗所走的时间相等,即10÷(3+2)=2(小时),这样就不难求出狗一共跑的路程是:5×2=10(千米).
苏步青教授在解题时,把注意力和着眼点放在问题的整体结构上,从而能触及问题的实质:狗从出发到甲、乙两相遇所用的时间,恰好是甲、乙二人相遇所用的时间,从而使问题得到巧妙地解决.苏教授这种解决问题的思想方法实际上就是数学中的整体思想的应用.对于某些数学问题,灵活运用整体思想,常可化难为易,捷足先登.在解二元一次方程组时,也要注意这种思想方法的应用.
比如解方程组
x+2(x+2y)=4
x+2y=1

解:把②代入①得x+2×1=4,所以x=2
把x=2代入②得2+2y=1,解之,得y=-
1
2

所以方程组的解为
x=2
y=-
1
2

同学们,你会用同样的方法解下面两个方程吗?试试看!
(1)
2x-3y-2=0
2x-3y+5
7
+2y=9
(2)
x-3y
3
-
1
3
=1
2x-
x-3y
x
=5

查看答案和解析>>

归纳猜想:同学们,让我们一起进行一次研究性学习:
(1)如图1已知正三角形ABC的中心为O,半径为R,将其沿直线l向右翻滚,当正三角形翻滚一周时,其中心O经过的路程是多少?

(2)如图2将半径为R的正方形沿直线l向右翻滚,当正方形翻滚一周时,其中心O经过的路程是多少?

(3)猜想:把正多边形翻滚一周,其中心O所经过的路程是多少(R为正多边形的半径,可参看图2)?请说明理由.

(4)进一步猜想:任何多边形都有一个外接圆,若将任意圆内接多边形翻滚一周时,其外心所经过的路程是否是一个定值(R为多边形外接圆的半径)?为什么?请以任意三角形为例说明(如图12).
通过以上猜想你可得到什么样的结论?请写出来.

查看答案和解析>>

(2010•南浔区模拟)利用图中图形的有关面积的等量关系都能证明数学中一个十分著名的定理,此证明方法就是美国第二十任总统伽菲尔德最先完成的,人们为了纪念他,把这一证法称为“总统”证法.这个定理称为
勾股定理
勾股定理
,该定理的结论其数学表达式是
a2+b2=c2
a2+b2=c2

查看答案和解析>>

精英家教网观察图(1),阅读理解关于长方体的对角线长定理:长方体一条对角线长的平方等于一个顶点上三条棱的长的平方和.用符号表示即:DF2=FE2+FB2+FG2.应用这个定理尝试解决下列问题:已知图(2)是棱长为3cm的立方体,那么该立方体的对角线HB为
 
cm;连接BG,则△HBG的面积为
 
cm2

查看答案和解析>>


同步练习册答案