如图1,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.
![](http://thumb.zyjl.cn/pic3/upload/images/201301/89/e1a0211d.png)
(1)在图1中,你发现线段AC,BD的数量关系是
相等
相等
,直线AC,BD相交成
90
90
度角.
(2)将图1中的△OAB绕点O顺时针旋转90°角,这时(1)中的两个结论是否成立?请做出判断并说明理由.
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,得到图3,这时(1)中的两个结论是否成立?请作出判断并说明理由.
解:(2)在图2中,(1)中的两个结论
成立
成立
(是否成立);
理由如下:延长CA交BD于点
E,∵等腰直角三角形OAB和OCD,
∴OA=OB,OC=OD,
∵AC2=AO2+CO2,BD2=OD2+OB2,
∴AC=BD;
∴△DOB≌△COA(SSS),
∴∠CAO=∠DBO,∠ACO=∠BDO,
∵∠ACO+∠CAO=90°,
∴∠ACO+∠DBO=90°,则∠AEB=90°,即直线AC,BD相交成90°角.
E,∵等腰直角三角形OAB和OCD,
∴OA=OB,OC=OD,
∵AC2=AO2+CO2,BD2=OD2+OB2,
∴AC=BD;
∴△DOB≌△COA(SSS),
∴∠CAO=∠DBO,∠ACO=∠BDO,
∵∠ACO+∠CAO=90°,
∴∠ACO+∠DBO=90°,则∠AEB=90°,即直线AC,BD相交成90°角.
;
(2)在图3中,(1)中的两个结论
成立
成立
(是否成立);
理由如下:延长CA交BD于点
F
F
,交OD于点
E
E
.