我们学过哪些证明三角形全等的方法 . 请出一道用其中一种方法证明三角形全等的题,写出已知.求证.画图并证明. 查看更多

 

题目列表(包括答案和解析)

(2013•燕山区一模)阅读下列材料:
问题:如图(1),已知正方形ABCD中,E、F分别是BC、CD边上的点,且∠EAF=45°. 判断线段BE、EF、FD之间的数量关系,并说明理由.

小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△DAF绕点A顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.
请你参考小明同学的思路,解决下列问题:
(1)图(1)中线段BE、EF、FD之间的数量关系是
EF=BE+DF
EF=BE+DF

(2)如图(2),已知正方形ABCD边长为5,E、F分别是BC、CD边上的点,且∠EAF=45°,AG⊥EF于点G,则AG的长为
5
5
,△EFC的周长为
10
10

(3)如图(3),已知△AEF中,∠EAF=45°,AG⊥EF于点G,且EG=2,GF=3,则△AEF的面积为
15
15

查看答案和解析>>

(2012•朝阳区二模)如图,D是△ABC中AB边的中点,△BCE和△ACF都是等边三角形,M、N分别是CE、CF的中点.
(1)求证:△DMN是等边三角形;
(2)连接EF,Q是EF中点,CP⊥EF于点P.求证:DP=DQ.
同学们,如果你觉得解决本题有困难,可以阅读下面两位同学的解题思路作为参考:
小聪同学发现此题条件中有较多的中点,因此考虑构造三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将△NCM绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.

查看答案和解析>>

(2013•孝感)如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.
(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);
(2)如图2,若点E在线段BC上滑动(不与点B,C重合).
①AE=EF是否总成立?请给出证明;
②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=-x2+x+1上,求此时点F的坐标.

查看答案和解析>>

如图,D是△ABC中AB边的中点,△BCE和△ACF都是等边三角形, M、N分别是CE、CF的中点.

【小题1】求证:△DMN是等边三角形;
【小题2】连接EF,Q是EF中点,CP⊥EF于点P. 求证:DP=DQ.
同学们,如果你觉得解决本题有困难,可以阅读下面两位同学的解题思路作为参考:
小聪同学发现此题条件中有较多的中点,因此考虑构造三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将△NCM绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.

查看答案和解析>>

如图,D是△ABC中AB边的中点,△BCE和△ACF都是等边三角形, M、N分别是CE、CF的中点.

【小题1】求证:△DMN是等边三角形;
【小题2】连接EF,Q是EF中点,CP⊥EF于点P. 求证:DP=DQ.
同学们,如果你觉得解决本题有困难,可以阅读下面两位同学的解题思路作为参考:
小聪同学发现此题条件中有较多的中点,因此考虑构造三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将△NCM绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.

查看答案和解析>>


同步练习册答案