D点到三角形ABC的两边AB.AC的距离相等.则D点在( ) A.BC边的中线上 B.BC边的高线上 C.BC边的垂直平分线上 D.角A的平分线所在的直线上 查看更多

 

题目列表(包括答案和解析)

求证:等腰三角形底边上的中点到两腰的距离相等.结合所给图形,把“已知”、“求证”补充完整,并完成证明过程.
已知:在△ABC中,AB=
AC
AC
,BD=
CD
CD
,DE⊥AB,DF
AC
求证:DE=
DF
DF

证明:

查看答案和解析>>

如图1,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6,沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图2),将△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1与点B重合时停止平移,在平移的过程中,C1D1与BC2交于点E,AC1与C2D2、C2B分别交于点F、P.
(1)当△AC1D1平移到如图3所示位置时,猜想D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1和△BC2D2重叠(阴影)部分面积为y,试求y与x的函数关系式,并写出自变量x的取值范围.精英家教网

查看答案和解析>>

如图1,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图2),将纸片△AC1D1沿直线D2B(AB)方向平移(点A、D1、D2、B始终在同一直线上),当点D1与点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,并求出函数y的最值.
精英家教网

查看答案和解析>>

如图1,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6,沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图2),将△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1与点B重合时停止平移,在平移的过程中,C1D1与BC2交于点E,AC1与C2D2、C2B分别交于点F、P.
(1)当△AC1D1平移到如图3所示位置时,猜想D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1和△BC2D2重叠(阴影)部分面积为y,试求y与x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

如图1,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图2),将纸片△AC1D1沿直线D2B(AB)方向平移(点A、D1、D2、B始终在同一直线上),当点D1与点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,并求出函数y的最值.

查看答案和解析>>


同步练习册答案