如图三角形ABC全等于三角形DEF.CE=3.则AF= . 4题图 5题图 查看更多

 

题目列表(包括答案和解析)

13、如图三角形ABC全等于三角形DEF,CE=3,则AF=
3

查看答案和解析>>

(2013•燕山区一模)如图(1),两块等腰直角三角板ABC和DEF,∠ABC=∠DEF=90°,点C与EF 在同一条直线l上,将三角板ABC绕点C逆时针旋转α角(0°<α≤90°)得到△A′B′C.设EF=2,BC=1,CE=x.

(1)如图(2),当α=90°,且点C与点F重合时,连结EB′,将直线EB′绕点E逆时针旋转45°,交直线A′D于点M,请补全图形,并求证:A′M=DM.
(2)如图(3),当0°<α<90°,且点C与点F不重合时,连结EB′,将直线EB′绕点E逆时针旋转45°,交直线A′D于点M,求
A′MDM
的值(用含x的代数式表示).

查看答案和解析>>

22、填空,完成下列证明过程.
如图,△ABC中,∠B=∠C,D,E,F分别在AB,BC,AC上,且BD=CE,∠DEF=∠B,
求证:ED=EF.
证明:∵∠DEC=∠B+∠BDE(
三角形的一个外角等于与它不相邻两个内角的和
),
又∵∠DEF=∠B(已知),
∴∠
BDE
=∠
CEF
(等式性质).
在△EBD与△FCE中,
BDE
=∠
CEF
(已证),
BD
=
CE
(已知),
∠B=∠C(已知),
∴△EBD≌△FCE(ASA).
∴ED=EF(全等三角形的对应边相等).

查看答案和解析>>

将一张矩形纸片沿对角线剪开(如图1),得到两张三角形纸片△ABC、△DEF(如图2),量得他们的斜边长为6cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,且点A、C、E、F在同一条直线上,点C与点E重合.△ABC保持不动,OB为△ABC的中线.现对△DEF纸片进行如下操作时遇到了三个问题,请你帮助解决.
(1)将图3中的△DEF沿CA向右平移,直到两个三角形完全重合为止.设平移距离CE为x(即CE的长),求平移过程中,△DEF与△BOC重叠部分的面积S与x的函数关系式,以及自变量的取值范围;
(2)△DEF平移到E与O重合时(如图4),将△DEF绕点O顺时针旋转,旋转过程中△DEF的斜边EF交△ABC的BC边于G,求点C、O、G构成等腰三角形时,△OCG的面积;
(3)在(2)的旋转过程中,△DEF的边EF、DE分别交线段BC于点G、H(不与端点重合).求旋转角∠COG为多少度时,线段BH、GH、CG之间满足GH2+BH2=CG2,请说明理由.
精英家教网

查看答案和解析>>

将一张矩形纸片沿对角线剪开(如图1),得到两张三角形纸片△ABC、△DEF(如图2),量得他们的斜边长为6cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,且点A、C、E、F在同一条直线上,点C与点E重合.△ABC保持不动,OB为△ABC的中线.现对△DEF纸片进行如下操作时遇到了三个问题,请你帮助解决.
(1)将图3中的△DEF沿CA向右平移,直到两个三角形完全重合为止.设平移距离CE为x(即CE的长),求平移过程中,△DEF与△BOC重叠部分的面积S与x的函数关系式,以及自变量的取值范围;
(2)△DEF平移到E与O重合时(如图4),将△DEF绕点O顺时针旋转,旋转过程中△DEF的斜边EF交△ABC的BC边于G,求点C、O、G构成等腰三角形时,△OCG的面积;
(3)在(2)的旋转过程中,△DEF的边EF、DE分别交线段BC于点G、H(不与端点重合).求旋转角∠COG为多少度时,线段BH、GH、CG之间满足GH2+BH2=CG2,请说明理由.

查看答案和解析>>


同步练习册答案