24.如图.在矩形ABCD中.对角线AC.BD交于O. 过点C作CH⊥BD于点H.∠DCH=30°. 求∠OCH 的度数 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)

情境观察:将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点DA(A′)、B在同一条直线上,如图2所示.

观察图2可知:与BC相等的线段是      ,∠CAC′=      °.

问题探究:如图3,△ABC中,AGBC于点G,以A为直角顶点,分别以ABAC为直角边,向△ABC外作等腰RtABE和等腰RtACF,过点EF作射线GA的垂线,垂足分别为PQ.试探究EPFQ之间的数量关系,并证明你的结论.

拓展延伸:如图4,△ABC中,AGBC于点G,分别以ABAC为一边向△ABC外作矩形ABME和矩形ACNF,射线GAEF于点H. 若AB=k AEAC=k AF,试探究HEHF之间的数量关系,并说明理由.

 

查看答案和解析>>

(本题满分12分)
情境观察:将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点DA(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是    ,∠CAC′=    °.

问题探究:如图3,△ABC中,AGBC于点G,以A为直角顶点,分别以ABAC为直角边,向△ABC外作等腰RtABE和等腰RtACF,过点EF作射线GA的垂线,垂足分别为PQ. 试探究EPFQ之间的数量关系,并证明你的结论.

拓展延伸:如图4,△ABC中,AGBC于点G,分别以ABAC为一边向△ABC外作矩形ABME和矩形ACNF,射线GAEF于点H. 若AB= k AEAC= k AF,试探究HEHF之间的数量关系,并说明理由.

查看答案和解析>>

(本题满分12分)

情境观察:将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点DA(A′)、B在同一条直线上,如图2所示.

观察图2可知:与BC相等的线段是      ,∠CAC′=      °.

问题探究:如图3,△ABC中,AGBC于点G,以A为直角顶点,分别以ABAC为直角边,向△ABC外作等腰RtABE和等腰RtACF,过点EF作射线GA的垂线,垂足分别为PQ. 试探究EPFQ之间的数量关系,并证明你的结论.

拓展延伸:如图4,△ABC中,AGBC于点G,分别以ABAC为一边向△ABC外作矩形ABME和矩形ACNF,射线GAEF于点H. 若AB= k AEAC= k AF,试探究HEHF之间的数量关系,并说明理由.

 

查看答案和解析>>

(本小题满分10分)

在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:

第一步:对折矩形纸片ABCD,使ADBC重合,得到折痕EF,把纸片展开(如图1);

第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2)

请解答以下问题:

1.(1)如图2,若延长MNBCP,△BMP是什么三角形?请证明你的结论.

2.(2)在图2中,若AB=aBC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP

 

查看答案和解析>>

(本小题满分10分)
在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:

第一步:对折矩形纸片ABCD,使ADBC重合,得到折痕EF,把纸片展开(如图1);
第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2)
请解答以下问题:
【小题1】(1)如图2,若延长MNBCP,△BMP是什么三角形?请证明你的结论.
【小题2】(2)在图2中,若AB=aBC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP

查看答案和解析>>


同步练习册答案