的条件下.若令. 查看更多

 

题目列表(包括答案和解析)

已知数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3).令bn=
1
anan+1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若f(x)=2x-1,求证:Tn=b1f(1)+b2f(2)+…+bnf(n)<
1
6
(n≥1);
(Ⅲ)令Tn=
1
2
(b1a+b2a2+b3a3+…+bnan)
(a>0),求同时满足下列两个条件的所有a的值:①对于任意正整数n,都有Tn
1
6
;②对于任意的m∈(0,
1
6
)
,均存在n0∈N*,使得n≥n0时,Tn>m.

查看答案和解析>>

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为函数f(x)的不动点,已知f(x)=ax2+(b+1)x+(b-1)(a≠0)
(1)当a=1,b=-2求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异不动点,求a的取值范围;
(3)在(2)的条件下,令g(x)=
1
x+2
+loga 
1+x
1-x
,解关于x的不等式g[x(x-
1
2
)]<
1
2

查看答案和解析>>

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为函数f(x)的不动点,已知f(x)=ax2+(b+1)x+(b-1)(a≠0)
(1)当a=1,b=-2求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异不动点,求a的取值范围;
(3)在(2)的条件下,令数学公式,解关于x的不等式数学公式

查看答案和解析>>

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为函数f(x)的不动点,已知f(x)=ax2+(b+1)x+(b-1)(a≠0)
(1)当a=1,b=-2求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异不动点,求a的取值范围;
(3)在(2)的条件下,令g(x)=
1
x+2
+loga 
1+x
1-x
,解关于x的不等式g[x(x-
1
2
)]<
1
2

查看答案和解析>>

已知数列{an}中,a1=3,a2=5,其前n项和满足:Sn+Sn-2=2Sn-1+2n-1(n≥3),令
(1)求数列{an}的通项公式;
(2)若f(x)=2x-1,求证:
(3)令(a>0),问是否存在正实数a同时满足下列两个条件?
①对任意n∈N+,都有
②对任意的m∈(0,),均存在n0∈N,使得当n≥n0时总有An>m,若存在,求出所有的a,若不存在,请说明理由。

查看答案和解析>>


同步练习册答案