题目列表(包括答案和解析)
1-x |
ax |
1-x |
ax |
a+b |
b |
1 |
a+b |
a |
x |
1 |
2 |
1 |
3 |
1 |
n |
1 |
23 |
2 |
32 |
3 |
43 |
n-1 |
n3 |
设函数 f (x)=ax-lnx-3(a∈R),g(x)=xe1-x.
(Ⅰ)若函数 g(x) 的图象在点 (0,0) 处的切线也恰为 f (x) 图象的一条切线,求实数 a的值;
(Ⅱ)是否存在实数a,对任意的 x∈(0,e],都有唯一的 x0∈[e-4,e],使得 f (x0)=g(x) 成立.若存在,求出a的取值范围;若不存在,请说明理由.
注:e是自然对数的底数.
设函数f(x)定义在(0,+∞)上,f(1)=0,导函数,.
(1)求g(x)的单调区间和最小值;
(2)讨论g(x)与的大小关系;
(3)是否存在x0>0,使得对任意x>0成立?若存在,求出x0的取值范围;若不存在,请说明理由.
设函数f(x)=ax+2,g(x)=a2x2-lnx+2,其中a∈R,x>0,
(Ⅰ)若a=2,求曲线y=g(x)在点(1,g(1))处的切线方程;
(Ⅱ)是否存在负数a,使f(x)≤g(x)对一切正数x都成立?若存在,求出a的取值范围;若不存在,请说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com