45.如图19-4.将△BMN以∠DMN的角平分线为轴翻折至△PDM的位置.即取AD的中点P.连结PM.从而△MPD≌△NBM.故DM=MN. 查看更多

 

题目列表(包括答案和解析)

如图①,将一张直角三角形纸片ABC折叠,使A与C重合,这时DE为折底,△CBE为等腰三角形,再将纸片沿△CBE的对称轴EF折叠,这时得到一个折叠而成的无缝隙、无重叠的矩形,这个矩形称为“折得矩形”.精英家教网
(1)如图②,正方形网格中的△ABC能折成“折得矩形”吗?,若能,请在图②中画出折痕;
(2)如图③,正方形网格中,以给定的BC为一边,画出一个斜△ABC,使其顶点A在格点上,且由△ABC折成的“折得矩形”为正方形;
(3)如果一个三角形折成的“折得矩形”为正方形,那么它必须满足的条件是
 

(4)若一个四边形能折成“折得矩形”,那么它必须满足的条件是
 

查看答案和解析>>

25、如图所示,将两块三角板的直角顶点重合.
(1)写出以C为顶点的相等的角;
(2)若∠ACB=150°,求∠DCE度数;
(3)写出∠ACB与∠DCE之间所具有的数量关系;
(4)当三角板ACD绕点C旋转时,你所写出的(3)中的关系是否变化?请说明理由.

查看答案和解析>>

(2012•烟台)(1)问题探究
如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.
(2)拓展延伸
①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由.
②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)

查看答案和解析>>

27、如图所示,将两块三角板的顶点重合.
(1)写出以O为顶点的相等的角;
(2)若∠AOD=127°,求∠BOC度数;
(3)写出∠BOC与∠AOD之间所具有的数量关系;
(4)当三角板AOB绕点O旋转时,你所写出的(3)中的关系是否有变化?请说明理由.

查看答案和解析>>


【小题1】情境观察 将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是        ,∠CAC′=          °.

【小题2】问题探究 如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q. 试探究EP与FQ之间的数量关系,并证明你的结论.

【小题3】拓展延伸 如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB=" k" AE,AC=" k" AF,试探究HE与HF之间的数量关系,并说明理由

查看答案和解析>>


同步练习册答案