26.B(点拨:②中有公因式(a-b),③中 有公约数4.故②和③不是最简分式) 查看更多

 

题目列表(包括答案和解析)

9、观察下列各组中的两个多项式:
①3x+y与x+3y;②-2m-2n与-(m+n);③2mn-4mp与-n+2p;④4x2-y2与2y+4x;⑤x2+6x+9与2x2y+6xy.
其中有公因式的是(  )

查看答案和解析>>

观察下列各组中的两个多项式:
①3x+y与x+3y;②-2m-2n与-(m+n);③2mn-4mp与-n+2p;④4x2-y2与2y+4x;⑤x2+6x+9与2x2y+6xy.
其中有公因式的是( )
A.①②③④
B.②③④⑤
C.③④⑤
D.①③④⑤

查看答案和解析>>

观察下列各组中的两个多项式:
①3x+y与x+3y;②-2m-2n与-(m+n);③2mn-4mp与-n+2p;④4x2-y2与2y+4x;⑤x2+6x+9与2x2y+6xy.
其中有公因式的是(  )
A.①②③④B.②③④⑤C.③④⑤D.①③④⑤

查看答案和解析>>

先阅读下面的材料,再分解因式:    
       要把多项式am+an+bm+bn 分解因式,可以先把它的前两项分成一组,并提出a ;把它的后两项分成一组,并提出b ,从而得到a (m+n )+b (m+n )。这时,由于a (m+n )+b (m+n ),又有公因式(m+n ),于是可提公因式(m+n ),从而得到(m+n )(a+b )。因此有am+an+bm+bn= (am+an )+ (bm+bn )=a (m+n )+b (m+n )= (m+n )(a+b )。
        这种因式分解的方法叫做分组分解法。如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来分解因式了。    
        请用上面材料中提供的方法分解因式:    
(1)a2-ab+ac-bc;    
(2)m2+5n-mn-5m。

查看答案和解析>>

先阅读下面的材料,再分解因式:

    要把多项式am+an+bm+bn分解因式,可以先把它的前两项分成一组,并提出a;把它的后两项分成一组,并提出b,从而得到a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n)又有公因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b).因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).

    这种因式分解的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来分解因式了.

    请用上面材料中提供的方法分解因式:

    (1)a2-ab+ac-bc;    (2)m2+5n-mn-5m.

查看答案和解析>>


同步练习册答案