解:,.-------------------- 故原式= ------- = ----------- 当时.原式 ---------- 查看更多

 

题目列表(包括答案和解析)

【答案】1.1×107

【考点】科学记数法—表示较大的数.

【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

【解答】将11000000用科学记数法表示为:1.1×107

故答案为:1.1×107

【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

查看答案和解析>>

22、如图1,某灌溉设备的喷头B高出地面1.25m,喷出的抛物线形水流在与喷头底部A的距离为1m处达到距地面最大高度2.25m,试在恰当的直角坐标系中求出与该抛物线水流对应的二次函数关系式.
学生小龙在解答图1所示的问题时,具体解答如下:
①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴,建立如图
2所示的平面直角坐标系;
②设抛物线水流对应的二次函数关系式为y=ax2
③根据题意可得B点与x轴的距离为1m,故B点的坐标为(-1,1);
④代入y=ax2得-1=a•1,所以a=-1;
⑤所以抛物线水流对应的二次函数关系式为y=-x2
数学老师看了小龙的解题过程说:“小龙的解答是错误的”.
(1)请指出小龙的解答从第
步开始出现错误,错误的原因是什么?
(2)请你写出完整的正确解答过程.

查看答案和解析>>

如图1,某灌溉设备的喷头B高出地面1.25m,喷出的抛物线形水流在与喷头底部A的距离为1m处达到距地面最大高度2.25m,试在恰当的直角坐标系中求出与该抛物线水流对应的二次函数关系式.
学生小龙在解答图1所示的问题时,具体解答如下:
①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴,建立如图
2所示的平面直角坐标系;
②设抛物线水流对应的二次函数关系式为y=ax2
③根据题意可得B点与x轴的距离为1m,故B点的坐标为(-1,1);
④代入y=ax2得-1=a•1,所以a=-1;
⑤所以抛物线水流对应的二次函数关系式为y=-x2
数学老师看了小龙的解题过程说:“小龙的解答是错误的”.
(1)请指出小龙的解答从第______步开始出现错误,错误的原因是什么?
(2)请你写出完整的正确解答过程.

查看答案和解析>>

如图1,某灌溉设备的喷头B高出地面1.25m,喷出的抛物线形水流在与喷头底部A的距离为1m处达到距地面最大高度2.25m,试在恰当的直角坐标系中求出与该抛物线水流对应的二次函数关系式.
学生小龙在解答图1所示的问题时,具体解答如下:
①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴,建立如图
2所示的平面直角坐标系;
②设抛物线水流对应的二次函数关系式为y=ax2
③根据题意可得B点与x轴的距离为1m,故B点的坐标为(-1,1);
④代入y=ax2得-1=a•1,所以a=-1;
⑤所以抛物线水流对应的二次函数关系式为y=-x2
数学老师看了小龙的解题过程说:“小龙的解答是错误的”.
(1)请指出小龙的解答从第______步开始出现错误,错误的原因是什么?
(2)请你写出完整的正确解答过程.

查看答案和解析>>

如图1,某灌溉设备的喷头B高出地面1.25m,喷出的抛物线形水流在与喷头底部A的距离为1m处达到距地面最大高度2.25m,试在恰当的直角坐标系中求出与该抛物线水流对应的二次函数关系式.
学生小龙在解答图1所示的问题时,具体解答如下:
①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴,建立如图
2所示的平面直角坐标系;
②设抛物线水流对应的二次函数关系式为y=ax2
③根据题意可得B点与x轴的距离为1m,故B点的坐标为(-1,1);
④代入y=ax2得-1=a•1,所以a=-1;
⑤所以抛物线水流对应的二次函数关系式为y=-x2
数学老师看了小龙的解题过程说:“小龙的解答是错误的”.
(1)请指出小龙的解答从第______步开始出现错误,错误的原因是什么?
(2)请你写出完整的正确解答过程.

查看答案和解析>>


同步练习册答案