如图.把一个面积为1的正方形等分成两个面积为的长方形.接着把面积为的长方形等分成两个面积为的正方形.再把面积为的正方形等分成两个面积为的矩形.如此进行下去.试利用图形揭示的规律计算:. 修远中学2007-2008初一年级第一学期期中考试 查看更多

 

题目列表(包括答案和解析)

(本小题6分)如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形。

1.拼成的正方形的面积与边长分别是多少?

2.你能在3×3方格图中,连接四个格点组成面积为5的正方形吗?

3.你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,则它的边长是多少?

 

查看答案和解析>>

(本小题6分)如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形。

1.拼成的正方形的面积与边长分别是多少?

2.你能在3×3方格图中,连接四个格点组成面积为5的正方形吗?

3.你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,则它的边长是多少?

 

查看答案和解析>>

(本题满分9分)如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕点B1按顺时针方向旋转120°,此时点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).

    小慧还发现:三角形纸片在上述两次旋转的过程中,顶点O运动所形成的图形是两段

圆弧,即,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧

与直线l1围成的图形面积等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之

和.

    小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA

边与直线l2重合,然后将正方形纸片绕着顶点^按顺时针方向旋转90°,此时点O运动到

了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形

纸片AO1C1B1绕顶点B1按顺时针方向旋转90°,……,按上述方法经过若干次旋转后.她

提出了如下问题:

     问题①:若正方形纸片OABC接上述方法经过3次旋转,求顶点O经过的路程,并

求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形纸片OA BC

按上述方法经过5次旋转,求顶点O经过的路程;

     问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是

?

       请你解答上述两个问题.

 

查看答案和解析>>

(本题满分9分)如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕点B1按顺时针方向旋转120°,此时点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).
小慧还发现:三角形纸片在上述两次旋转的过程中,顶点O运动所形成的图形是两段
圆弧,即,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧
与直线l1围成的图形面积等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之
和.
小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA
边与直线l2重合,然后将正方形纸片绕着顶点^按顺时针方向旋转90°,此时点O运动到
了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形
纸片AO1C1B1绕顶点B1按顺时针方向旋转90°,……,按上述方法经过若干次旋转后.她
提出了如下问题:
问题①:若正方形纸片OABC接上述方法经过3次旋转,求顶点O经过的路程,并
求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形纸片OA BC
按上述方法经过5次旋转,求顶点O经过的路程;
问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是
?
请你解答上述两个问题.

查看答案和解析>>

(本题满分9分)如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕点B1按顺时针方向旋转120°,此时点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).
小慧还发现:三角形纸片在上述两次旋转的过程中,顶点O运动所形成的图形是两段
圆弧,即,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧
与直线l1围成的图形面积等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之
和.
小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA
边与直线l2重合,然后将正方形纸片绕着顶点^按顺时针方向旋转90°,此时点O运动到
了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形
纸片AO1C1B1绕顶点B1按顺时针方向旋转90°,……,按上述方法经过若干次旋转后.她
提出了如下问题:
问题①:若正方形纸片OABC接上述方法经过3次旋转,求顶点O经过的路程,并
求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形纸片OA BC
按上述方法经过5次旋转,求顶点O经过的路程;
问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是
?
请你解答上述两个问题.

查看答案和解析>>


同步练习册答案