要使分式的值为0.则 . 查看更多

 

题目列表(包括答案和解析)

由多项式的乘法法则知:若(x+a)(x+b)=x2+x+q,则p=a+b,q=a·b;反过来x2+x+q=(x+a)(x+b)要将多项式x2+x+q进行分解,关键是找到两个数a、b,使a+b=p,a·b=q,如对多项式x2-3x+2,有p=-3,q=2,a=-1,b=-2。此时(-1)+(-2)=-3,(-1)(-2)=2,所以x2-3x+2可分解为(x-1)(x-2)即x2-3x-2=(x-1)(x-2)。
(1)根据以上填写下表:
多项式
p
q
a
b
分解结果
x2+9x+20
 
 
 
 
 
x2-9x+20
 
 
 
 
 
x2+x-20
 
 
 
 
 
x2-x-20
 
 
 
 
(2)根据填表,还可得出如下结论:
当q是正数时,应分解成两个因数a、b_______________号,a、b的符号与__________相同;
当q是负数时,应分解成的两个因数a、b______________号,a、b中绝对值较大的因数的符号与_______相同。
(3)分解因式:
x2-x-12=_____________;x2-7x+6=________________。

查看答案和解析>>

要使分式有意义,则a的值应是(    );要使分式的值为零,则a的值应为(    )。

查看答案和解析>>

某精品水果超市销售一种进口水果A,从去年1至7月,这种水果的进价一路攀升,每千克A的进价y1与月份x(1≤x≤7,且x为整数),之间的函数关系式如下表:
月份x
1
2
3
4
5
6
7
y1(元/千克)
50
60
70
80
90
100
110
随着我国对一些国家进出口关税的调整,该水果的进价涨势趋缓,在8至12月份每千克水果A的进价y2与月份x(8≤x≤12,且x为整数)之间存在如下图所示的变化趋势。
(1)请观察表格和图像,用所学过的一次函数、反比例函数、二次函数的有关知识分别写出y1与x和y2与x的函数关系式。
(2)若去年该水果的售价为每千克180元,且销售该水果每月必须支出(除进价外)的固定支出为300元,已知该水果在1月至7月的销量p1(千克)与月份x满足:p1=10x+80;8月至12月的销量p2(千克)与月份x满足:p2=-10x+250;则该水果在第几月销售时,可使该月所获得的利润最大?并求出此时的最大利润。
(3)今年1月到6月,该进口水果的进价进行调整,每月进价均比去年12月的进价上涨15元,且每月的固定支出(除进价外)增加了15%,已知该进口水果的售价在去年的基础上提高了a%(a<100),与此同时每月的销量均在去年12月的基础上减少了0.2a%,这样销售下去要使今年1至6月的总利润为68130元,试求出a的值。(保留两个有效数字)(参考数据:232=529,242=576,252=625,262=676)

查看答案和解析>>

甲、乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为P,羽毛球距地面高度h(m)与其飞出的水平距离s(m)之间的关系式为,如图,已知球网AB距原点5m,乙扣球的最大高度(用线段CD表示)为,设乙的起跳点C的横坐标为m,乙原地起跳,因球的高度高于乙扣球的最大高度会导致接球失败,若甲要使乙接球失败,则m的取值范围是(    )。

查看答案和解析>>


同步练习册答案