直线与y轴的交点在x轴上方.且y随x的增大而减小.则m的取值范围是 . 查看更多

 

题目列表(包括答案和解析)

直线与y轴的交点在x轴上方,且y随x的增大而减小,则m的取值范围是(     )

查看答案和解析>>

如图(1)在直角坐标系中.一条曲线y=
k
x
(x>0)与矩形AOBC的两边交于M(4,2)、N两点.且四边形MONC的面积是8.
(1)说明:矩形AOBC是正方形.
(2)如图(2).若点P(a,b)是这条曲线MN段(含端点)上的一动点,由点P向x轴、y轴作垂线PE、PD.垂足是E、D,与线段AB分别交于F、G.
①填空:点F的坐标
(4-b,b)
(4-b,b)
(用b的代数式表示);点G的坐标
(a,4-a)
(a,4-a)
〔用a的代数式表示);
②说明:△BOG∽△AFO;
③当点P在曲找y=
k
x
的MN段(含端点)上移动时.△OFC随之变动.是否存在点P,使△OFG是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

如图(1)在直角坐标系中.一条曲线y=数学公式(x>0)与矩形AOBC的两边交于M(4,2)、N两点.且四边形MONC的面积是8.
(1)说明:矩形AOBC是正方形.
(2)如图(2).若点P(a,b)是这条曲线MN段(含端点)上的一动点,由点P向x轴、y轴作垂线PE、PD.垂足是E、D,与线段AB分别交于F、G.
①填空:点F的坐标______(用b的代数式表示);点G的坐标______〔用a的代数式表示);
②说明:△BOG∽△AFO;
③当点P在曲找y=数学公式的MN段(含端点)上移动时.△OFC随之变动.是否存在点P,使△OFG是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

如图,矩形OABC的边OA在x轴上,OC边在y轴上,OA=8,OC=6,过点C与对角线OB垂直的直线l,交x轴于P,
(1)求直线l的解析式及P点的坐标;
(2)若点P沿x轴的正方向以1单位/s的速度移动,直线l也随之移动,且l∥OB,设直线分矩形部分面积为y,求y与P点移动时间x的函数关系式;
(3)若点P在(2)的情况下移动的同时,直线l上有一点M,从P点出发以1单位/s的速度沿直线l向上移动,求以M为圆心,半径为1的圆与矩形四条边所在直线相切的时间x的值.

查看答案和解析>>

如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴、y轴正半轴交于点M、N,且OM=6cm,∠OMN=30°,等边△ABC的顶点B与原点O重合,BC边落在x轴的正半轴上,点A恰好落在线段MN上,如图2,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB、AC分别与线段MN交于点E、F,在△ABC平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s),△PEF的面积为S(cm2).
(1)求等边△ABC的边长;
(2)当点P在线段BA上运动时,求S与t的函数关系式,并写出自变量t的取值范围;
(3)点P沿折线B→A→C运动的过程中,是否在某一时刻,使△PEF为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.
精英家教网

查看答案和解析>>


同步练习册答案