1.1 2.y=(x+3)2-2 3. 4.-2 5.1 6.向上,直线x=-1, 7.-1 8.6 9.y=x2-3x+2 10.直线x=3 11.a> 且a≠0 12.向上 13.-8 14.y=x2-2x,x=3或x=-1,x<0或x>2 查看更多

 

题目列表(包括答案和解析)

直线l的解析式为y=
3
4
x+8,与x轴、y轴分别交于A,B两点,P是x轴上精英家教网一点,以P为圆心的圆与直线l相切于B点.
(1)求点P的坐标及⊙P的半径R;
(2)若⊙P以每秒
10
3
个单位沿x轴向左运动,同时⊙P的半径以每秒
3
2
个单位变小,设⊙P的运动时间为t秒,且⊙P始终与直线l有交点,试求t的取值范围.

查看答案和解析>>

直线l的解析式y=
3
4
x
+8,与x轴、y轴分别交于A、B两点,P是x轴上一点,以P为圆心的圆与直线l相切于B点.
(1)求点P的坐标及⊙P的半径R;
(2)若⊙P以每秒
10
3
个单位沿x轴向左运动,同时⊙P的半径以每秒
3
2
个单位变小,设⊙P的运动时间是t秒,且⊙P始终与直线l有交点,试求t的取值范围;
(3)在(2)中,设⊙P被直线l截得的弦长为a,问是否存在t的值,使a最大?若存在,求出t的值.

查看答案和解析>>

直线l的解析式为y=
3
4
x+8
,与x轴、y轴分别交于A、B两点,P是x轴上一点,以P为圆心的圆与直线l相切于B点.
(1)求点P的坐标及⊙P的半径R;
(2)若⊙P以每秒
10
3
个单位沿x轴向左运动,同时⊙P的半径以每秒
2
3
个单位变小,设⊙P的运动时间为t秒,且⊙P始终与直线l有交点,试求t的取值范围;
(3)在(2)中,设⊙P被直线l截得的弦长为a,问是否存在t的值,使a最大?若存在,求出t的值;
(4)在(2)中,设⊙P与直线l的一个交点为Q,使得△APQ与△ABO相似,请直接写出此时精英家教网t的值.

查看答案和解析>>

直线l:y=-
34
x+3分别交x轴、y轴于B、A两点,等腰直角△CDM斜边落在x轴上,且CD=6,如图1所示.若直线l以每秒3个单位向上作匀速平移运动,同时点C从(6,0)开始以每秒2个单位的速度向右作匀速平移运动,如图2所示,设移动后直线l运动后分别交x轴、y轴于Q、P两点,以OP、OQ为边作如图矩形OPRQ.设运动时间为t秒.
(1)求运动后点M、点Q的坐标(用含t的代数式表示);
(2)若设矩形OPRQ与运动后的△CDM的重叠部分面积为S,求S与t的函数关系式,并写出t相应的取值范围;
(3)若直线l和△CDM运动后,直线l上存在点T使∠OTC=90°,则当在线段PQ上符合条件的点T有且只有两个时,求t的取值范围.
精英家教网

查看答案和解析>>

直线l1:y=(m-2)x-2与直线l2:y=-
1
2
x平行,则m的值是
3
2
3
2
;直线l1向上平移
2
2
个单位就可得到直线l2

查看答案和解析>>


同步练习册答案