在关于 ,使方程的两根恰好是一个直角三角形两锐角的正弦.若有,求出 的值.若没有,说明道理.若方程是 呢? 查看更多

 

题目列表(包括答案和解析)

如图,在矩形ABCD中,已知边AB、BC的长恰为关于x的一元二次方程x2-(m-2)x+3m=0的两根.动点P、Q分别从点B、C出发,其中,点P以每秒a个单位的速度,沿B→C的路线向点C运动;点Q以每秒3个单位的速度,沿C→D的路线向点D运动.若P、Q两点同时出发,运动时间为t(s)(t>0),且当t=2时,P、Q两点恰好同时到达目的地.
(1)求m、a的值;精英家教网
(2)是否存在这样的t,使得△APQ为直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
(3)若在动点P、Q从起点出发的同时,另有M、N两点同时从点A出发,其中,点M以每秒2个单位的速度,沿A→D的路线向点D运动;点N以每秒1个单位的速度,沿A→B的路线向点B运动.问:是否存在这样的t,使得四边形PQMN为平行四边形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.若将“平行四边形”改为“梯形”,结果又如何?

查看答案和解析>>

如图,在矩形ABCD中,已知边AB、BC的长恰为关于x的一元二次方程x2-(m-2)x+3m=0的两根.动点P、Q分别从点B、C出发,其中,点P以每秒a个单位的速度,沿B→C的路线向点C运动;点Q以每秒3个单位的速度,沿C→D的路线向点D运动.若P、Q两点同时出发,运动时间为t(s)(t>0),且当t=2时,P、Q两点恰好同时到达目的地.
(1)求m、a的值;
(2)是否存在这样的t,使得△APQ为直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
(3)若在动点P、Q从起点出发的同时,另有M、N两点同时从点A出发,其中,点M以每秒2个单位的速度,沿A→D的路线向点D运动;点N以每秒1个单位的速度,沿A→B的路线向点B运动.问:是否存在这样的t,使得四边形PQMN为平行四边形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.若将“平行四边形”改为“梯形”,结果又如何?

查看答案和解析>>

如图,在矩形ABCD中,已知边AB、BC的长恰为关于x的一元二次方程x2-(m-2)x+3m=0的两根.动点P、Q分别从点B、C出发,其中,点P以每秒a个单位的速度,沿B→C的路线向点C运动;点Q以每秒3个单位的速度,沿C→D的路线向点D运动.若P、Q两点同时出发,运动时间为t(s)(t>0),且当t=2时,P、Q两点恰好同时到达目的地.
(1)求m、a的值;
(2)是否存在这样的t,使得△APQ为直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
(3)若在动点P、Q从起点出发的同时,另有M、N两点同时从点A出发,其中,点M以每秒2个单位的速度,沿A→D的路线向点D运动;点N以每秒1个单位的速度,沿A→B的路线向点B运动.问:是否存在这样的t,使得四边形PQMN为平行四边形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.若将“平行四边形”改为“梯形”,结果又如何?

查看答案和解析>>

唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望峰火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题--将军饮马问题:
如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的P点饮马后再到B点宿营.请问怎样走才能使总的路程最短?
作法如下:如(1)图,从B出发向河岸引垂线,垂足为D,在AP的延长线上,取B关于河岸的对称点B′,连接AB′,与河岸线相交于P,则P点就是饮马的地方,将军只要从A出发,沿直线走到P,饮马之后,再由P沿直线走到B,所走的路程就是最短的.
(1)观察发现
再如(2)图,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E、F是底边AD与BC的中点,连接EF,在线段EF上找一点P,使BP+AP最短.
作点B关于EF的对称点,恰好与点C重合,连接AC交EF于一点,则这点就是所求的点P,故BP+AP的最小值为
 

精英家教网
(2)实践运用
如(3)图,已知⊙O的直径MN=1,点A在圆上,且∠AMN的度数为30°,点B是弧AN的中点,点P在直径MN上运动,求BP+AP的最小值.
精英家教网
(3)拓展迁移
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
①求这条抛物线所对应的函数关系式;
②在抛物线的对称轴直线x=1上找到一点M,使△ACM周长最小,请求出此时点M的坐标与△ACM周长最小值.(结果保留根号)
精英家教网

查看答案和解析>>

唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望峰火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题--将军饮马问题:
如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的P点饮马后再到B点宿营.请问怎样走才能使总的路程最短?
做法如下:如图1,从B出发向河岸引垂线,垂足为D,在AD的延长线上,取B关于河岸的对称点B′,连接AB′,与河岸线相交于P,则P点就是饮马的地方,将军只要从A出发,沿直线走到P,饮马之后,再由P沿直线走到B,所走的路程就是最短的.
(1)观察发现
再如图2,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E、F是底边AD与BC的中点,连接EF,在线段EF上找一点P,使BP+AP最短.
作点B关于EF的对称点,恰好与点C重合,连接AC交EF于一点,则这点就是所求的点P,故BP+AP的最小值为
2
3
2
3

(2)实践运用
如图3,已知⊙O的直径MN=1,点A在圆上,且∠AMN的度数为30°,点B是弧AN的中点,点P在直径MN上运动,求BP+AP的最小值.
(3)拓展迁移
如图4,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
①求这条抛物线所对应的函数关系式;
②在抛物线的对称轴直线x=1上找到一点M,使△ACM周长最小,请求出此时点M的坐标与△ACM周长最小值.(结果保留根号)

查看答案和解析>>


同步练习册答案