18.如图2.直线a∥b.则∠ACB= 20题图 查看更多

 

题目列表(包括答案和解析)

精英家教网精英家教网小知识:如图,我们称两臂长度相等(即CA=CB)的圆规为等臂圆规.当等臂圆规的两脚摆放在一条直线上时,若张角∠ACB=x°,则底角∠CAB=∠CBA=(90-
x2
)°.
请运用上述知识解决问题:如图,n个相同规格的等臂圆规的两脚依次摆放在同一条直线上,其张角度数变化如下:∠A1C1A2=160°,∠A2C2A3=80°,∠A3C3A4=40°,∠A4C4A5=20°,…
精英家教网
(1)①由题意可得∠A1A2C1=
 
°;
②若A2M平分∠A3A2C1,则∠MA2C2=
 
°;
(2)∠An+1AnCn=
 
°(用含n的代数式表示);
(3)当n≥3时,设∠An-1AnCn-1的度数为a,∠An+1AnCn-1的角平分线AnN与AnCn构成的角的度数为β,那么a与β之间的等量关系是
 
,请说明理由.(提示:可以借助下面的局部示意图)

查看答案和解析>>

)图①中是一座钢管混凝土系杆拱桥,桥的拱肋ACB可视为抛物线的一部分(如图②),桥面(视为水平的)与拱肋用垂直于桥面的系杆连接,测得拱肋
的跨度AB为200米,与AB中点O相距20米处有一高度为48米的系杆.
【小题1】求正中间系杆OC的长度;
【小题2】若相邻系杆之间的间距均为5米(不考虑系杆的粗细),则是否存在一根系杆的长度恰好是OC长度的一半?请说明理由.

查看答案和解析>>

)图①中是一座钢管混凝土系杆拱桥,桥的拱肋ACB可视为抛物线的一部分(如图②),桥面(视为水平的)与拱肋用垂直于桥面的系杆连接,测得拱肋
的跨度AB为200米,与AB中点O相距20米处有一高度为48米的系杆.
【小题1】求正中间系杆OC的长度;
【小题2】若相邻系杆之间的间距均为5米(不考虑系杆的粗细),则是否存在一根系杆的长度恰好是OC长度的一半?请说明理由.

查看答案和解析>>

小知识:如图,我们称两臂长度相等(即CA=CB)的圆规为等臂圆规。当等臂圆规的两脚摆放在一条直线上时,若张角∠ACB=x°,则底角∠CAB=∠CBA=(90-)°请运用上述知识解决问题: 如图,n个相同规格的等臂圆规的两脚依次摆放在同一条直线上,其张角度数变化如下:
∠A1C1A2=160°,∠A2C2A3=80°,∠A3C3A4=40°,∠A4C4A5=20°,…

 
(1)①由题意可得∠A1A2C1=_________;
②若A2M平分∠A3A2C1,则∠MA2C2=__________;
(2)∠An+1AnCn____________;(用含n的代数式表示)
(3)当n≥3时,设∠An-1AnCn-1的度数为,∠An+1AnCn-1的角平分线AnM与AnCn构成的角的度数为,那么之间的等量关系是__________,请说明理由。(提示:可以借助下面的局部示意图)

查看答案和解析>>

小知识:如图,我们称两臂长度相等(即CA=CB)的圆规为等臂圆规.当等臂圆规的两脚摆放在一条直线上时,若张角∠ACB=x°,则底角∠CAB=∠CBA=(90-数学公式)°.
请运用上述知识解决问题:如图,n个相同规格的等臂圆规的两脚依次摆放在同一条直线上,其张角度数变化如下:∠A1C1A2=160°,∠A2C2A3=80°,∠A3C3A4=40°,∠A4C4A5=20°,…

(1)①由题意可得∠A1A2C1=______°;
②若A2M平分∠A3A2C1,则∠MA2C2=______°;
(2)∠An+1AnCn=______°(用含n的代数式表示);
(3)当n≥3时,设∠An-1AnCn-1的度数为a,∠An+1AnCn-1的角平分线AnN与AnCn构成的角的度数为β,那么a与β之间的等量关系是______,请说明理由.(提示:可以借助下面的局部示意图)

查看答案和解析>>


同步练习册答案