如图.是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移BE距离就得到此图形.其中AB = 8, BE = 5, DH = 3.求阴影部分的面积. 查看更多

 

题目列表(包括答案和解析)

如图,是重叠的两个直角三角形,将其中一个直角三角形沿BC方向平移BE距离就得到此图形,其中AB
= 8, BE = 5, DH = 3。求阴影部分的面积。

查看答案和解析>>

有两个直角三角形,在△ABC中,∠ACB=90°,AC=3,BC=6,在△DEF中,∠FDE=90°,DE=DF=4。将这两个直角三角形按图1所示位置摆放,其中直角边在同一直线上,且点与点重合。现固定,将以每秒1个单位长度的速度在上向右平移,当点与点重合时运动停止。设平移时间为秒。

(1)当        秒时,边恰好经过点;当        秒时,运动停止;

(2)在平移过程中,设重叠部分的面积为,请直接写出的函数关系式,并写出的取值范围;

(3)当停止运动后,如图2,为线段上一点,若一动点从点出发,先沿方向运动,到达点后再沿斜坡方向运动到达点,若该动点在线段上运动的速度是它在斜坡上运动速度的2倍,试确定斜坡的坡度,使得该动点从点运动到点所用的时间最短。(要求,简述确定点位置的方法,但不要求证明。)

 

 

查看答案和解析>>

有两个直角三角形,在△ABC中,∠ACB=90°,AC=3,BC=6,在△DEF中,∠FDE=90°,DE=DF=4。将这两个直角三角形按图1所示位置摆放,其中直角边在同一直线上,且点与点重合。现固定,将以每秒1个单位长度的速度在上向右平移,当点与点重合时运动停止。设平移时间为秒。

(1)当       秒时,边恰好经过点;当       秒时,运动停止;
(2)在平移过程中,设重叠部分的面积为,请直接写出的函数关系式,并写出的取值范围;
(3)当停止运动后,如图2,为线段上一点,若一动点从点出发,先沿方向运动,到达点后再沿斜坡方向运动到达点,若该动点在线段上运动的速度是它在斜坡上运动速度的2倍,试确定斜坡的坡度,使得该动点从点运动到点所用的时间最短。(要求,简述确定点位置的方法,但不要求证明。)

查看答案和解析>>

有两个直角三角形,在△ABC中,∠ACB=90°,AC=3,BC=6,在△DEF中,∠FDE=90°,DE=DF=4。将这两个直角三角形按图1所示位置摆放,其中直角边在同一直线上,且点与点重合。现固定,将以每秒1个单位长度的速度在上向右平移,当点与点重合时运动停止。设平移时间为秒。

(1)当       秒时,边恰好经过点;当       秒时,运动停止;
(2)在平移过程中,设重叠部分的面积为,请直接写出的函数关系式,并写出的取值范围;
(3)当停止运动后,如图2,为线段上一点,若一动点从点出发,先沿方向运动,到达点后再沿斜坡方向运动到达点,若该动点在线段上运动的速度是它在斜坡上运动速度的2倍,试确定斜坡的坡度,使得该动点从点运动到点所用的时间最短。(要求,简述确定点位置的方法,但不要求证明。)

查看答案和解析>>

两个直角边为6的全等的等腰直角三角形Rt△AOB和Rt△CED按图1所示的位置放置A与C重合,O与E重合.

(1)求图1中,A,B,D三点的坐标.

(2)Rt△AOB固定不动,Rt△CED沿x轴以每秒2个单位长的速度向右运动,当D点运动到与B点重合时停止,设运动x秒后Rt△CED和Rt△AOB重叠部分面积为y,求y与x之间的函数关系式.

(3)当Rt△CED以(2)中的速度和方向运动,运动时间x=4秒时RT△CED运动到如图2所示的位置,求经过A,G,C三点的抛物线的解析式.

(4)现有一半径为2,圆心P在(3)中的抛物线上运动的动圆,试问⊙P在运动过程中是否存在⊙P与x轴或y轴相切的情况,若存在请求出P的坐标,若不存在请说明理由.

查看答案和解析>>


同步练习册答案