题目列表(包括答案和解析)
有两个直角三角形,在△ABC中,∠ACB=90°,AC=3,BC=6,在△DEF中,∠FDE=90°,DE=DF=4。将这两个直角三角形按图1所示位置摆放,其中直角边在同一直线
上,且点
与点
重合。现固定
,将
以每秒1个单位长度的速度在
上向右平移,当点
与点
重合时运动停止。设平移时间为
秒。
(1)当为 秒时,
边恰好经过点
;当
为 秒时,运动停止;
(2)在平移过程中,设
与
重叠部分的面积为
,请直接写出
与
的函数关系式,并写出
的取值范围;
(3)当停止运动后,如图2,
为线段
上一点,若一动点
从点
出发,先沿
方向运动,到达点
后再沿斜坡
方向运动到达点
,若该动点
在线段
上运动的速度是它在斜坡
上运动速度的2倍,试确定斜坡
的坡度,使得该动点从点
运动到点
所用的时间最短。(要求,简述确定点
位置的方法,但不要求证明。)
有两个直角三角形,在△ABC中,∠ACB=90°,AC=3,BC=6,在△DEF中,∠FDE=90°,DE=DF=4。将这两个直角三角形按图1所示位置摆放,其中直角边在同一直线
上,且点
与点
重合。现固定
,将
以每秒1个单位长度的速度在
上向右平移,当点
与点
重合时运动停止。设平移时间为
秒。
(1)当为 秒时,
边恰好经过点
;当
为 秒时,运动停止;
(2)在平移过程中,设
与
重叠部分的面积为
,请直接写出
与
的函数关系式,并写出
的取值范围;
(3)当停止运动后,如图2,
为线段
上一点,若一动点
从点
出发,先沿
方向运动,到达点
后再沿斜坡
方向运动到达点
,若该动点
在线段
上运动的速度是它在斜坡
上运动速度的2倍,试确定斜坡
的坡度,使得该动点从点
运动到点
所用的时间最短。(要求,简述确定点
位置的方法,但不要求证明。)
两个直角边为6的全等的等腰直角三角形Rt△AOB和Rt△CED按图1所示的位置放置A与C重合,O与E重合.
(1)求图1中,A,B,D三点的坐标.
(2)Rt△AOB固定不动,Rt△CED沿x轴以每秒2个单位长的速度向右运动,当D点运动到与B点重合时停止,设运动x秒后Rt△CED和Rt△AOB重叠部分面积为y,求y与x之间的函数关系式.
(3)当Rt△CED以(2)中的速度和方向运动,运动时间x=4秒时RT△CED运动到如图2所示的位置,求经过A,G,C三点的抛物线的解析式.
(4)现有一半径为2,圆心P在(3)中的抛物线上运动的动圆,试问⊙P在运动过程中是否存在⊙P与x轴或y轴相切的情况,若存在请求出P的坐标,若不存在请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com