已知:抛物线y=ax
2+bx+c与x轴交于A,B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C
在y轴的正半轴上;线段OB,OC的长(OB<OC)是方程x
2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求此抛物线的表达式;
(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE.当△CEF的面积最大时,求点E的坐标,并求此时面积的最大值;
(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点Q,点D的坐标为(-3,0).问:是否存在这样的直线l,使得△ODQ是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.