24..B(0.4) (1)求直线AB的解析式, (2)点P从 A点出发沿x轴向O点运动.点Q从O点出发沿y轴向B点运动.两点同时出发且运动速度相同.设AP = t﹙0﹤t﹤4﹚.求直线PQ的解析式, (3)M是线段AB的中点.在(2)的条件下.试判断△MPQ的形状.并说明理由. 查看更多

 

题目列表(包括答案和解析)

(本题10分)已知:直角梯形OABC中,BC//OA,∠AOC=90°,以AB为直径的OM交OC于点D、E,连结AD、BD.现以O为坐标原点,OA、OC所在直线为x轴、y轴建立如图所示直角坐标系,若抛物线yax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点.

【小题1】(1)写出顶点B的坐标 ▲ (用a的代数式表示);
【小题2】(2)求抛物线的解析式:
【小题3】(3)在x轴下方的抛物线上是否存在这样的点P:过点P作PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标:若不存在,说明理由.

查看答案和解析>>

(本题10分)已知:直角梯形OABC中,BC//OA,∠AOC=90°,以AB为直径的OM交OC于点D、E,连结AD、BD.现以O为坐标原点,OA、OC所在直线为x轴、y轴建立如图所示直角坐标系,若抛物线yax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点.

【小题1】(1)写出顶点B的坐标 ▲ (用a的代数式表示);
【小题2】(2)求抛物线的解析式:
【小题3】(3)在x轴下方的抛物线上是否存在这样的点P:过点P作PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标:若不存在,说明理由.

查看答案和解析>>

(本题10分)已知:直角梯形OABC中,BC//OA,∠AOC=90°,以AB为直径的OM交OC于点D、E,连结AD、BD.现以O为坐标原点,OA、OC所在直线为x轴、y轴建立如图所示直角坐标系,若抛物线yax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点.

1.(1)写出顶点B的坐标  ▲  (用a的代数式表示);

2.(2)求抛物线的解析式:

3.(3)在x轴下方的抛物线上是否存在这样的点P:过点P作PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标:若不存在,说明理由.

 

查看答案和解析>>

(本题10分)已知:直角梯形OABC中,BC//OA,∠AOC=90°,以AB为直径的OM交OC于点D、E,连结AD、BD.现以O为坐标原点,OA、OC所在直线为x轴、y轴建立如图所示直角坐标系,若抛物线yax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点.

1.(1)写出顶点B的坐标  ▲  (用a的代数式表示);

2.(2)求抛物线的解析式:

3.(3)在x轴下方的抛物线上是否存在这样的点P:过点P作PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标:若不存在,说明理由.

 

查看答案和解析>>

加试题(本小题满分20分,其中(1)、(2)、(3)题各3分,(4)题11分)
(1)一个正数的平方根为3-a和2a+3,则这个正数是
81
81

(2)若x2+2x+y2-6y+10=0,则xy=
-1
-1

(3)已知a,b分别是6-
13
的整数部分和小数部分,则2a-b=
13
13

(4)阅读下面的问题,并解答问题:
1)如图1,等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数是多少?(请在下列横线上填上合适的答案)
分析:由于PA,PB,PC不在同一个三角形中,为了解决本题我们可以将△ABP绕顶点A逆时针旋转到△ACP′处,此时可以利用旋转的特征等知识得到:
  ①∠APB=∠AP′C=∠AP′P+∠PP′C;
  ②AP=AP′,且∠PAP′=
60
60
度,所以△APP′为
等边
等边
三角形,则∠AP′P=
60
60
度;
  ③P′C=BP=4,P′P=AP=3,PC=5,所以△PP′C为
直角
直角
三角形,则∠PP′C=
90
90
度,从而得到∠APB=
150
150
度.
 2)请你利用第1)题的解答方法,完成下面问题:
如图2,在△ABC中,∠CAB=90°,AB=AC,E、F为边BC上的点,且∠EAF=45°,试说明:EF2=BE2+FC2

查看答案和解析>>


同步练习册答案