有三个二元一次方程:①.②.③.请你从这三个方程中选择你喜欢的两个方程.组成一个方程组.并求出这个方程组的解. 查看更多

 

题目列表(包括答案和解析)

明在复习数学知识时,针对“求一元二次方程的解”,整理了以下的几种方法,请你按有关内容补充完整:

复习日记卡片

内容:一元二次方程解法归纳                                                                      时间:2007年6月×日
举例:求一元二次方程x2-x-1=0的两个解
方法一:选择合适的一种方法(公式法、配方法、分解因式法)求解
解方程:x2-x-1=0。
解:
方法二:利用二次函数图象与坐标轴的交点求解
如图所示,把方程x2-x-1=0的解看成是二次函数y=_______的图象与x轴交点的横坐标,即x1,x2就是方程的解。

方法三:利用两个函数图象的交点求解
(1)把方程x2-x-1=0的解看成是一个二次函数y=________的图象与一个一次函数y=________图象交点的横坐标;
(2)画出这两个函数的图象,用x1,x2在x轴上标出方程的解。

查看答案和解析>>

小明在复习数学知识时,针对“求一元二次方程的解”,整理了以下的几种方法,请你将有关内容补充完整: 例题:求一元二次方程x2-x-1=0的两个解。
(1)解法一:选择合适的一种方法(公式法、配方法、分解因式法)求解,解方程:x2-x-1=0;
(2)解法二:利用二次函数图象与坐标轴的交点求解,如图(1)所示,把方程x2-x-1=0的解看成是二次函数y=____的图象与x 轴交点的横坐标,即x1,x2就是方程的解。
(3)解法三:利用两个函数图象的交点求解,
①把方程x2-x-1=0的解看成是一个二次函数y=____的图象与一个一次函数y=____的图象交点的横坐标;②画出这两个函数的图象,用x1,x2在x轴上标出方程的解。

查看答案和解析>>

课本中介绍我国古代数学名著《孙子算经》上有这样一道题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几只?如果假设鸡有x只,兔有y只,请你列出关于x,y的二元一次方程组;并写出你求解这个方程组的方法。

查看答案和解析>>

课本中介绍我国古代数学名著《孙子算经》上有这样一道题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几头(只)?

如果假设鸡有只,兔有只,请你列出关于的二元一次方程组,并写出你求解这个方程组的方法。

查看答案和解析>>

我们在解决数学问题时,经常采用“转化”(或“化归”)的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题。
譬如,在学习了一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题。
问题提出:如何把一个正方形分割成n(n≥9)个小正方形?
为解决上面问题,我们先来研究两种简单的“基本分割法”,
基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形。
基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形。

问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n(n≥9)个小正方形。
(1)把一个正方形分割成9个小正方形,
一种方法:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成4+5=9(个)小正方形。
另一种方法:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成6+3=9(个)小正方形。
(2)把一个正方形分割成10个小正方形,
方法:如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加3×2个小正方形,从而分割成4+3×2=10(个)小正方形。
(3)请你参照上述分割方法,把图⑥给出的正方形分割成11个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法).
(4)把一个正方形分割成n(n≥9)个小正方形,
方法:通过“基本分割法1”、“基本分割法2”或其组合把一个正方形分割成9个、10个和11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正方形,从而把一个正方形分割成12个、13个、14个小正方形,依次类推,即可把一个正方形分割成n(n≥9)个小正方形.从上面的分法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成n(n≥9)个小正方形。
类比应用:仿照上面的方法,我们可以把一个正三角形分割成n(n≥9)个小正三角形。
(1)基本分割法1:把一个正三角形分割成4个小正三角形(请你在图a中画出草图);
(2)基本分割法2:把一个正三角形分割成6个小正三角形(请你在图b中画出草图);
(3)分别把图c、图d和图e中的正三角形分割成9个、10个和11个小正三角形(用钢笔或圆珠笔画出草图即可,不用说明分割方法);
(4)请你写出把一个正三角形分割成n(n≥9)个小正三角形的分割方法(只写出分割方法,不用画图)。

查看答案和解析>>


同步练习册答案