题目列表(包括答案和解析)
(本题满分12分)
已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.
1.(1)填空:菱形ABCD的边长是 ▲ 、面积是 ▲ 、 高BE的长是 ▲ ;
2.(2)探究下列问题:
若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时
② △APQ的面积S关于t的函数关系式,以及S的最大值;
3.(3)在运动过程中是否存在某一时刻使得△APQ为等腰三角形,若存在求出t的值;若不存在说明理由.
(本题10分)已知△ABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程的两个实数根.
(1)求证:无论为何值时,方程总有两个不相等的实数根;
(2)当为何值时,△ABC是以BC为斜边的直角三角形;
(本题满分12分)
已知直线(<0)分别交轴、轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作轴的垂线交直线AB于点C,设运动时间为秒.
(1)当时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).
① 直接写出=1秒时C、Q两点的坐标;
② 若以Q、C、A为顶点的三角形与△AOB相似,求的值.
(2)当时,设以C为顶点的抛物线与直线AB的另一交点为D
(如图2),① 求CD的长;
② 设△COD的OC边上的高为,当为何值时,的值最大?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com