题目列表(包括答案和解析)
a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 | a11 | a12 |
x1 | y1 | x2 | y2 | x3 | y3 | x4 | y4 | x5 | y5 | x6 | y6 |
如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:编号为1,2,3,4,5,6的横纵坐标分别对应数列{an)(n∈N*)的前12项,如下表所示,
|
如图,坐标纸上的每个单元格的边长为1,
由下往上的六个点:1,2,3,4,5,6的横纵坐标
分别对应数列(n∈Z*)的前12项,
如下表所示:
一. 选择题 : (本大题共10小题, 每小题5分, 共50分)
ABDCC DDBCB
二.填空题: (本大题共5小题, 每小题5分, 共25分)
11.1680 12.5 13.-1 14. 15.
三. 解答题: (本大题共6小题, 共75分)
16.(本小题满分12分)
解:(1)f(x)......3分
……4分
令
的单调区间为,k∈Z ...............6分
(2)由得......7分
又为的内角 .....9分
.......11分
......12分
17.(本小题满分12分)
解:(1).......5分
.......12分
18.(本题满分12分)
解法一:
(1)在棱取三等分点,使,则,由⊥平面,
得⊥平面。过点作于,连结,
则,为所求二面角的平面角.
在中,,
,
所以,二面角的余弦值为......6分
(2)因为,所以点到平面的距离等于
到平面的距离,⊥平面,
过点作于,连结,则,
⊥平面,过点作于,
则,为所求距离,
所以,求点到平面的距离为......12分
解法二:
证明:(1)建立如图所示的直角坐标系,
则A(0,0,0)、D(0,3,0)、P(0,0,3)、
B(4,0,0)、C(4,3,0), 由已知得,
得.
设平面QAC的法向量为,则,
即∴,令,得到平面QAC的一个法向量为
∵PA⊥平面ABCD,∴为平面ABCD的法向量.
设二面角P―CD―B的大小为q,依题意可得.....6分
(2)由(1)得
设平面PBD的法向量为,则,
即,∴令,得到平面QAC的一个为法向量为
19. (本小题满分13分)
(1)解:当时,,………………………………①
则当, 时,………………②
①-②,得,即
∴,∴,当时,,则.
∴是以为首项,为公比的等比数列,∴,
∴………………………6分
(2)证明:.
∴, 则,…………③
…………………………④
③-④,得
∴.
当时,, ∴为递增数列,
∴........13分
20.(本小题满分13分)
解法一:
(1)设椭圆方程为(a>b>0),由已知c=1,
又
所以a=,b2=a2-c2=1,
椭圆C的方程是x2+ =1. .......4分
(2)若直线l与x轴重合,则以AB为直径的圆是x2+y2=1,
若直线l垂直于x轴,则以AB为直径的圆是(x+)2+y2=.
由解得即两圆相切于点(1,0).
因此所求的点T如果存在,只能是(1,0). 事实上,点T(1,0)就是所求的点........6分
证明如下:
当直线l垂直于x轴时,以AB为直径的圆过点T(1,0).
若直线l不垂直于x轴,可设直线l:y=k(x+).
由即(k2+2)x2+k2x+k2-2=0.记点A(x1,y1),B(x2,y2),则
由=(x1-1, y1), =(x2-1, y2), =(x1-1)(x2-1)+y1y2=(x1-1)(x2-1)+k2(x1+)(x2+)
=(k2+1)x1x2+(k2-1)(x1+x2)+k2+1=(k2+1) +(k2-1) + +1=0,
所以TA⊥TB,即以AB为直径的圆恒过点T(1,0).故在坐标平面上存在一个定点T(1,0)满足条件.......13分
解法二:
(1)由已知c=1,设椭圆C的方程是(a>1).
因为点P在椭圆C上,所以,解得a2=2,所以椭圆C的方程是:.
.......4分
(2)假设存在定点T(u,v)满足条件.同解法一得(k2+2)x2+k2x+k2-2=0.
记点A(x1,y1),B(x2,y2),则
又因为=(x1-u, y1-v), =(x2-u, y2-v),及y1=k(x1+),y2=k(x2+).
所以=(x1-u)(x2-u)+(y1-v)(y2-v)
=(k2+1)x1x2+(k2-u-kv)(x1+x2)+k2-v+u2+v2
=
当且仅当?=0恒成立时,以AB为直径的圆恒过点T.
?=0恒成立等价于解得u=1,v=0.
此时,以AB为直径的圆恒过定点T(1,0). 当直线l垂直于x轴时,以AB为直径的圆亦过点T(1,0).所以在坐标平面上存在一个定点T(1,O)满足条件
........13分
解法三:
(1)同解法一或解法二........4分
(2)设坐标平面上存在一个定点T满足条件,根据直线过x轴上的定点S及椭圆的对称性,所求的点T如果存在,只能在x轴上,设T(t,O).
同解法一得=(x1-t,y1),=(x2-t,y2)
=(x1-t)(x2-t)+y1y2=(x1-t)(x2-t)+k2(x1+)(x2+)
=(k2+1)x1x2+(k2-t)(x1+x2)+k2+t2=
当且仅当?=O恒成立时,以AB为直径的圆恒过点T.
?=O恒成立等价于解得t=1.所以当t=1时,以AB为直径的圆恒过点T.
当直线l垂直于x轴时,以AB为直径的圆亦过点T(1,O).
所以在坐标平面上存在一个定点T(1,O)满足条件........13分
21. (本小题满分13分)
解:(1)由题意 …………………………1分
当时,取得极值, 所以
即 …………………3分
此时当时,,当时,,
是函数的最小值。 ………………………5分
(2)设,则 ,……8分
设,
,令解得或
列表如下:
__
0
+
函数在和上是增函数,在上是减函数。
当时,有极大值;当时,有极小值……10分
函数与的图象有两个公共点,函数与的图象有两个公共点
或 ……13分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com