在多项式①,②,③,④ ⑤,⑥中.是完全平方式的有( ) A.1个 B.2个 C.3个 D.5个 查看更多

 

题目列表(包括答案和解析)

在多项式①;②;③;④;⑤;⑥中,是完全平方式的有
[     ]
A、1个
B、2个
C、3个
D、5个

查看答案和解析>>

在多项式①x2+2xy-y2;②-x2+2xy-y2;③x2+xy+y2;④1+x+中,能用完全平方公式分解的是(  )

  A.①②  B.①③  C.①④  D.②④

 

查看答案和解析>>

小明在做作业时,不慎将墨水滴在一个三项式上,将前后两项污染得看不清楚了,但中间项是12xy,为了便于填上后面的空,请你帮他把前后两项补充完整,使它成为完全平方式,你有几种方法?(至少写出三种不同的方法)
三项式:■+12xy+■=______2
(1)______;(2)______;(3)______.
我们知道因式分解与整式乘法是互逆的关系,那么逆用乘法公式(x+a)(x+b)=x2+(a+b)x+ab,即x2+(a+b)x+ab=(x+a)(x+b)是否可以分解因式呢?当然可以,而且也很简单.
如:
(1)x2+5x+6=x2+(3+2)x+3×2=(x+2)(x+3);
(2)x2-5x-6=x2+(-6+1)x+(-6)×1=(x-6)(x+1).
请你仿照上述方法,把下列多项式分解因式:
(1)x2-8x+7;
(2)x2+7x-18.

查看答案和解析>>

小明在做作业时,不慎将墨水滴在一个三项式上,将前后两项污染得看不清楚了,但中间项是12xy,为了便于填上后面的空,请你帮他把前后两项补充完整,使它成为完全平方式,你有几种方法?(至少写出三种不同的方法)
三项式:■+12xy+■=______2
(1)______;(2)______;(3)______.
我们知道因式分解与整式乘法是互逆的关系,那么逆用乘法公式(x+a)(x+b)=x2+(a+b)x+ab,即x2+(a+b)x+ab=(x+a)(x+b)是否可以分解因式呢?当然可以,而且也很简单.
如:
(1)x2+5x+6=x2+(3+2)x+3×2=(x+2)(x+3);
(2)x2-5x-6=x2+(-6+1)x+(-6)×1=(x-6)(x+1).
请你仿照上述方法,把下列多项式分解因式:
(1)x2-8x+7;
(2)x2+7x-18.

查看答案和解析>>

问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)①
=2002-52
=39975
(1)例题求解过程中,第②步变形是利用______(填乘法公式的名称);
(2)用简便方法计算:9×11×101×10001.
问题2:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2
=(x+a)2-(2a)2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a2-4a-12.
问题3:若x-y=5,xy=3,求:①x2+y2;②x4+y4的值.

查看答案和解析>>


同步练习册答案