解:(1).即. (2)当时.(米). 查看更多

 

题目列表(包括答案和解析)

(1)已知:A=x2-2x-1,B=3x2-x+1,C=-x2-x+1,先化简:(B-3A)-[B-
1
2
(2C+4B)]
,再求当x=-
1
7
时的此式的值.
(2)列方程解应用题:某校学生列队以8千米/时的速度前进,在队尾,校长让一名学生跑步到队伍的最前面找带队老师传达一个指示,然后立即返回队尾,这位学生的速度为12千米/时,从队尾出发赶到排头又回到队尾共用了7.2分钟,则学生队伍的长是多少米?

查看答案和解析>>

(1)已知:A=x2-2x-1,B=3x2-x+1,C=-x2-x+1,先化简:(B-3A)-数学公式,再求当x=数学公式时的此式的值.
(2)列方程解应用题:某校学生列队以8千米/时的速度前进,在队尾,校长让一名学生跑步到队伍的最前面找带队老师传达一个指示,然后立即返回队尾,这位学生的速度为12千米/时,从队尾出发赶到排头又回到队尾共用了7.2分钟,则学生队伍的长是多少米?

查看答案和解析>>

阅读下面的题目及分析过程,再回答问题.
设x,y为正实数,且x+y=6,求数学公式的最小值.分析:(1)如图(1),作长为6的线段AB,过A、B两点在同侧各做AC⊥AB,BD⊥AB,使AC=1,BD=2.
(2)设P是AB上的一个动点.设PA=x,PB=y,则x+y=6,连接PC、PD,则PC=数学公式,PD=数学公式
(3)只要在AB上找到使PC+PD为最小的点P的位置,就可以计算出数学公式的最小值.问题:①在图(2)中作出符合上述要求的点.
②求AP的长?
③通过上述作图,计算当x+y=6时,数学公式的最小值为________.
解决问题:
为了丰富学生的课余生活,石家庄外国语学校决定举办一次机器人投篮大赛.规则是:操纵者站在距线段AB 2米的C处,如图(3)使机器人从A点出发,到C处取到篮球,然后行驶到B处,将篮球投入设在B处的篮筐内,用时少的即为胜利者,为了获得胜利,请你画出C的最佳位置;并求当AB=3米时机器人行驶的最短路程?

查看答案和解析>>

阅读材料:
(1)对于任意实数a和b,都有(a-b)2≥0,∴a2-2ab+b2≥0,于是得到a2+b2≥2ab,当且仅当a=b时,等号成立.
(2)任意一个非负实数都可写成一个数的平方的形式.即:如果a≥0,则数学公式.如:2=数学公式数学公式等.
例:已知a>0,求证:数学公式
证明:∵a>0,∴数学公式
数学公式,当且仅当数学公式时,等号成立.
请解答下列问题:
某园艺公司准备围建一个矩形花圃,其中一边靠墙(墙足够长),另外三边用篱笆围成(如图所示).设垂直于墙的一边长为x米.
(1)若所用的篱笆长为36米,那么:
①当花圃的面积为144平方米时,垂直于墙的一边的长为多少米?
②设花圃的面积为S米2,求当垂直于墙的一边的长为多少米时,这个花圃的面积最大?并求出这个最大面积;
(2)若要围成面积为200平方米的花圃,需要用的篱笆最少是多少米?

查看答案和解析>>

阅读材料:
(1)对于任意实数a和b,都有(a-b)2≥0,∴a2-2ab+b2≥0,于是得到a2+b2≥2ab,当且仅当a=b时,等号成立.
(2)任意一个非负实数都可写成一个数的平方的形式.即:如果a≥0,则.如:2=等.
例:已知a>0,求证:
证明:∵a>0,∴
,当且仅当时,等号成立.
请解答下列问题:
某园艺公司准备围建一个矩形花圃,其中一边靠墙(墙足够长),另外三边用篱笆围成(如图所示).设垂直于墙的一边长为x米.
(1)若所用的篱笆长为36米,那么:
①当花圃的面积为144平方米时,垂直于墙的一边的长为多少米?
②设花圃的面积为S米2,求当垂直于墙的一边的长为多少米时,这个花圃的面积最大?并求出这个最大面积;
(2)若要围成面积为200平方米的花圃,需要用的篱笆最少是多少米?

查看答案和解析>>


同步练习册答案