5.x≥-且x≠.x≠3 (点拨:根据二次根式.分式和负整数指数幂有意义的条件得不等式组 解得) 查看更多

 

题目列表(包括答案和解析)

(2011•新华区一模)我们知道:根据二次函数的图象,可以直接确定二次函数的最大(小)值;根据“两点之间,线段最短”,并运用轴对称的性质,可以在一条直线上找到一点,使得此点到这条直线同侧两定点之间的距离之和最短.
这种数形结合的思想方法,非常有利于解决一些数学和实际问题中的最大(小)值问题.请你尝试解决一下问题:
(1)在图1中,抛物线所对应的二次函数的最大值是
4
4

(2)在图2中,相距3km的A、B两镇位于河岸(近似看做直线l)的同侧,且到河岸的距离AC=1千米,BD=2千米,现要在岸边建一座水塔,分别直接给两镇送水,为使所用水管的长度最短,请你:
①作图确定水塔的位置;
②求出所需水管的长度(结果用准确值表示)
(3)已知x+y=6,求
x2+9
+
y2+25
的最小值;
此问题可以通过数形结合的方法加以解决,具体步骤如下:
①如图3中,作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=
3
3
,DB=
5
5

②在AB上取一点P,可设AP=
x
x
,BP=
y
y

x2+9
+
y2+25
的最小值即为线段
PC
PC
和线段
PD
PD
长度之和的最小值,最小值为
10
10

查看答案和解析>>

已知抛物线y=-
1
2
x2+(6-
m2
)x+m-3与x轴有A、B两个交点,且A、B两点关于y轴对称.
(1)求m的值;
(2)写出抛物线解析式及顶点坐标;
(3)根据二次函数与一元二次方程的关系,将此题的条件换一种说法写出来.

查看答案和解析>>

我们知道:根据二次函数的图象,可以直接确定二次函数的最大(小)值;根据“两点之间,线段最短”,并运用轴对称的性质,可以在一条直线上找到一点,使得此点到这条直线同侧两定点之间的距离之和最短.
这种数形结合的思想方法,非常有利于解决一些数学和实际问题中的最大(小)值问题.请你尝试解决一下问题:
(1)在图1中,抛物线所对应的二次函数的最大值是______;
(2)在图2中,相距3km的A、B两镇位于河岸(近似看做直线l)的同侧,且到河岸的距离AC=1千米,BD=2千米,现要在岸边建一座水塔,分别直接给两镇送水,为使所用水管的长度最短,请你:
①作图确定水塔的位置;
②求出所需水管的长度(结果用准确值表示)
(3)已知x+y=6,求+的最小值;
此问题可以通过数形结合的方法加以解决,具体步骤如下:
①如图3中,作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=______,DB=______;
②在AB上取一点P,可设AP=______,BP=______;
+的最小值即为线段______和线段______长度之和的最小值,最小值为______.

查看答案和解析>>

已知抛物线y=-+(6-)x+m-3与x轴有A、B两个交点,且A、B两点关于y轴对称.
  (1)求m的值; 
 (2)写出抛物线解析式及顶点坐标; 
 (3)根据二次函数与一元二次方程的关系将此题的条件换一种说法写出来.

查看答案和解析>>

我们知道:根据二次函数的图象,可以直接确定二次函数的最大(小)值;根据“两点之间,线段最短”,并运用轴对称的性质,可以在一条直线上找到一点,使得此点到这条直线同侧两定点之间的距离之和最短.
这种数形结合的思想方法,非常有利于解决一些数学和实际问题中的最大(小)值问题.请你尝试解决一下问题:
(1)在图1中,抛物线所对应的二次函数的最大值是______;
(2)在图2中,相距3km的A、B两镇位于河岸(近似看做直线l)的同侧,且到河岸的距离AC=1千米,BD=2千米,现要在岸边建一座水塔,分别直接给两镇送水,为使所用水管的长度最短,请你:
①作图确定水塔的位置;
②求出所需水管的长度(结果用准确值表示)
(3)已知x+y=6,求数学公式+数学公式的最小值;
此问题可以通过数形结合的方法加以解决,具体步骤如下:
①如图3中,作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=______,DB=______;
②在AB上取一点P,可设AP=______,BP=______;
数学公式+数学公式的最小值即为线段______和线段______长度之和的最小值,最小值为______.

查看答案和解析>>


同步练习册答案