如图11.△ABC为等边三角形.D.F分别为BC.AB上的点.且CD=BF.以AD为边作等边△ADE. 图11 (1)求证:△ACD≌△CBF. (2)点D在线段BC上何处时.四边形CDEF是平行四边形且∠DEF=30°. 查看更多

 

题目列表(包括答案和解析)

(本小题满分11分)
如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线
BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).
(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F与直线EN有怎样的位置关系?都请直接写出结论,不必证明或说明理由;
(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;
(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系及点F与直线EN的位置关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.

查看答案和解析>>

(本小题满分11分)
如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线
BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).
(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F与直线EN有怎样的位置关系?都请直接写出结论,不必证明或说明理由;
(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;
(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系及点F与直线EN的位置关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.

查看答案和解析>>

(本小题满分11分)
如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线
BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).
(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F与直线EN有怎样的位置关系?都请直接写出结论,不必证明或说明理由;
(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;
(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系及点F与直线EN的位置关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.

查看答案和解析>>

加试题(本小题满分20分,其中(1)、(2)、(3)题各3分,(4)题11分)
(1)一个正数的平方根为3-a和2a+3,则这个正数是
81
81

(2)若x2+2x+y2-6y+10=0,则xy=
-1
-1

(3)已知a,b分别是6-
13
的整数部分和小数部分,则2a-b=
13
13

(4)阅读下面的问题,并解答问题:
1)如图1,等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数是多少?(请在下列横线上填上合适的答案)
分析:由于PA,PB,PC不在同一个三角形中,为了解决本题我们可以将△ABP绕顶点A逆时针旋转到△ACP′处,此时可以利用旋转的特征等知识得到:
  ①∠APB=∠AP′C=∠AP′P+∠PP′C;
  ②AP=AP′,且∠PAP′=
60
60
度,所以△APP′为
等边
等边
三角形,则∠AP′P=
60
60
度;
  ③P′C=BP=4,P′P=AP=3,PC=5,所以△PP′C为
直角
直角
三角形,则∠PP′C=
90
90
度,从而得到∠APB=
150
150
度.
 2)请你利用第1)题的解答方法,完成下面问题:
如图2,在△ABC中,∠CAB=90°,AB=AC,E、F为边BC上的点,且∠EAF=45°,试说明:EF2=BE2+FC2

查看答案和解析>>

(11·西宁)(本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C为 (-1,0) .如图17所示,B点在抛物线图象上,过点BBDx轴,垂足为D,且B点横坐标为-3.

(1)求证:△BDC≌△COA

(2)求BC所在直线的函数关系式;

(3)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.

 

查看答案和解析>>


同步练习册答案