37.解析:(1),(2)∵M.N都在上.∴..∴.∴. 查看更多

 

题目列表(包括答案和解析)

阅读理解题:
网格纸上画着纵、横两组平行线,相邻平行线之间的距离都相等,这两组平行线的交点称为格点,由多条线段首位顺次相接而组成的图形叫多边形,如果一个多边形的顶点都在格点上,那么这种多边形叫格点多边形,有趣的是:这种多边形的面积可根据图形内部及它的边上的格点数目来计算,算法十分简捷.
设格点多边形的面积为S,多边形内部的格点数为N,它边上的格点数为L,下面我们来探究S与N、L三者之间的数量关系,问题研究应从简单的图形入手.

(1)当N=0时的格点多边形,根据图1观察下表,填空:
图形序号    S    N    L
   ①    1    0    4
   ②    2    0    6
   ③    3    0    8
观察图1①、②、③可以发现S与L之间的数量关系式是:
S=
1
2
L-1
S=
1
2
L-1


(2)根据图2,填写下表:
图形序号    S    N    L  
1
2
  L
   ①    2.5       5    2.5
   ②       2    6    3
   ③    4    3     
请你在图2④的位置上再画一个N=2的格点多边形(不同于图2②);
(3)综上分析与归纳,格点多边形的面积S与多边形内部的格点数N,它边上的格点数L之间的数量关系式是:
S=
1
2
L+N-1
S=
1
2
L+N-1

查看答案和解析>>

已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=4.现以O为坐标原点,OA所在直线为精英家教网x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若⊙P的半径为R,圆心P在(2)的抛物线上运动,问:是否存在这样的点P,使得⊙P与两坐标轴都相切?若存在,请求出此时⊙P半径R的值;若不存在,请说明理由.

查看答案和解析>>

已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=4.现以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若⊙P的半径为R,圆心P在(2)的抛物线上运动,问:是否存在这样的点P,使得⊙P与两坐标轴都相切?若存在,请求出此时⊙P半径R的值;若不存在,请说明理由.

查看答案和解析>>

已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=4.现以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若⊙P的半径为R,圆心P在(2)的抛物线上运动,问:是否存在这样的点P,使得⊙P与两坐标轴都相切?若存在,请求出此时⊙P半径R的值;若不存在,请说明理由.

查看答案和解析>>

已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=4.现以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若⊙P的半径为R,圆心P在(2)的抛物线上运动,问:是否存在这样的点P,使得⊙P与两坐标轴都相切?若存在,请求出此时⊙P半径R的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案