2.理解反比例函数的概念.会列出实际问题的反比例函数关系式. 教学过程 查看更多

 

题目列表(包括答案和解析)

【倾听理解】(这是一次数学活动课上,师生利用“几何画板”软件探究函数性质的活动片段)
如图,若直线x=m(m>0)分别交x轴,曲线y=
2
x
(x>0)和y=
3
x
(x>0)于点P,M,N.
师:同学们能发现怎样的结论呢?
生1:当m=1时,M点坐标(1,2)…
生2:当m=2时,有
MN
PM
=
1
2


师:很好!大家从一个图形出发,发现这么多结论!
【一起参与】
请你写出4个不同类型的结论.
答:
(1)
根据图象知,在第一象限内,y随x的增大而减小
根据图象知,在第一象限内,y随x的增大而减小

(2)
点M与点N的横坐标相同
点M与点N的横坐标相同

(3)
这两个反比例函数的图象都是双曲线
这两个反比例函数的图象都是双曲线

(4)
这两个函数图象与坐标轴没有交点
这两个函数图象与坐标轴没有交点

查看答案和解析>>

精英家教网如图,在平面直角坐标系中,点A(10,0),点C(0,6),BC∥OA,OB=10,点E从点B出发,以每秒1个单位长度沿BC向点C运动,点F从点O出发,以每秒2个单位长度沿OB向点B运动,现点E、F同时出发,连接EF并延长交OA于点D,当F点到达B点时,E、F两点同时停止运动.设运动时间为t秒
(1)当四边形ABED是平行四边形时,求t的值;
(2)当△BEF的面积最大时,求t的值;
(3)当以BE为直径的圆经过点F时,求t的值;
(4)当动点E、F会同时在某个反比例函数的图象上时,求t的值.(直接写出答案)

查看答案和解析>>

2010年8月31日,全国绿化委员会、国家林业局、重庆市人民政府共同发起“绿化长江重庆行动”,该行动就是要加快长江两岸造林绿化步伐,保护母亲河,促进入与自然和谐共生.某园艺公司从 9 月开始积极响应这一行动,进行植树造林.该公司第 x 月种植树木的亩数 y(亩)与 x 之间满足y=x+4,(其中x从9月算起,即9月时 x=l,10月时x=2,…,且1≤x≤6,x为正整数).但由于植树规模增加,每亩的收益会相应降低,每亩的收益 P(千元)与种植树木亩数 y(亩)之间的关系如下表:
亩数y(亩) 5 6 7 8
每亩收益P(千元/亩) 46 44 42 40
(1)请观察题中的表格,用所学过的一次函数、二次函数和反比例函数的有关知识求出 P与 y 之间所 满足的函数关系表达式:
(2)求该行动实施六个月来,第几月的总收益最大?此时每亩收益为多少?
(3)进入三月份,便是植树造林的“黄金期”,为此政府出台了一项激励措施:在“植树造林”过程中,每月植树面积与二月份植树面积相同的部分,按二月份每亩收益进行结算;超出二月份植树面积 的部分,每亩收益将按二月份时每亩的收益再增加 0.6a%进行结算.这样,该公司三月份植树面积比二月份的植树面积增加了a%.另外,三月份时公司需对三月份之前种植的所有树木进行保养,除去成本后政府给予每亩 5a%千元的保养补贴.最后,该公司三月份获得种植树木的收益和政府保养补贴共 702 千元.请通过计算,估算出 a 的整数值.
(参考数据:872=7569,882=7744,892=7921,902=8100)

查看答案和解析>>

如图,在平面直角坐标系中,点A(10,0),∠OBA=90°,BC∥OA,OB=8,点E从点B出发,以每秒1个单位长度沿BC向点C运动,点F从点O出发,以每秒2个单位长度沿OB向点B运动.现点E、F同时出发,当点F到达点B时,E、F两点同时停止运动.
(1)求梯形OABC的高BG的长;
(2)连接E、F并延长交OA于点D,当E点运动到几秒时,四边形ABED是等腰梯形;
(3)动点E、F是否会同时在某个反比例函数的图象上?如果会,请直接写出这时动精英家教网点E、F运动的时间t的值;如果不会,请说明理由.

查看答案和解析>>

(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b==-+=+
又∵≥0,∴+≥0+,即a+b≥
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.

查看答案和解析>>


同步练习册答案