4.函数的图象 函数的图象是由直角坐标系中的一系列点组成.图象上的每一点坐标(x.y)代表了函数的一对对应值.即把自变量x与函数y的每一对对应值分别作为点的横坐标和纵坐标.在直角坐标系中描出相应的点.这些点组成的图形.就是这个函数的图象. 查看更多

 

题目列表(包括答案和解析)

精英家教网在直角坐标系内有函数y=
1
2x
(x>0)和一条直线的图象,直线与x、y轴正半轴分别交于点A和点B,且OA=OB=1,点P为曲线上任意一点,它的坐标是(a,b),由点P向x轴、y轴作垂线PM、PN(M、N为垂足)分别与直线AB相交于点E和点F.
(1)如果交点E、F都在线段AB上(如图),分别求出E、F点的坐标(只需写出答案.不需写出计算过程);
(2)当点P在曲线上移动,试求△OEF的面积(结果可用a、b的代数式表示);
(3)如果AF=
6
2
,求
OF
OE
的值.

查看答案和解析>>

在直角坐标系xOy中,设点A(0,t),点Q(t,b)(t,b均为非零常数).平移二次精英家教网函数y=-tx2的图象,得到的抛物线F满足两个条件:①顶点为Q;②与x轴相交于B,C两点(|OB|<|OC|).连接AB.
(1)是否存在这样的抛物线F,使得|OA|2=|OB|•|OC|?请你作出判断,并说明理由;
(2)如果AQ∥BC,且tan∠ABO=
32
,求抛物线F对应的二次函数的解析式.

查看答案和解析>>

在直角坐标系中,二次函数y=-
1
2
x2+
3m
2
x+n-5的图象与x轴交于点A、B,与y轴交于点C,其中点A在点B的左边,若∠ACB=90°,OC>OA且
OC
OA
+
OC
OB
=
2
5

(1)求△ABC的面积及这个二次函数的具体表达式;
(2)试设计满足下述条件的一个方案(说明理由):保持图象的形状大小不变,使以图象与坐标轴的3个交点为顶点的三角形的面积是△ABC的面积的一半.

查看答案和解析>>

在直角坐标系xOy中,已知点P是反比例函数y=
2
3
x
(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.
(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.
(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:
①求出点A,B,C的坐标.
②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的
1
2
?若存在,试求出所有满足条件的M点的坐标;若不存在,试说明理由.
精英家教网

查看答案和解析>>

精英家教网在直角坐标系XOY中,二次函数图象的顶点坐标为C(4,-
3
)
,且与x轴的两个交点间的距离为6.
(1)求二次函数解析式;
(2)在x轴上方的抛物线上,是否存在点Q,使得以点Q、A、B为顶点的三角形与△ABC相似?如果存在,请求出Q点的坐标,如果不存在,请说明理由.

查看答案和解析>>


同步练习册答案