请完成下列图表: 函数 大致图象 性质 新课 查看更多

 

题目列表(包括答案和解析)

(2012•镇江)对于二次函数y=x2-3x+2和一次函数y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.
现有点A(2,0)和抛物线E上的点B(-1,n),请完成下列任务:
【尝试】
(1)当t=2时,抛物线E的顶点坐标是
(1,-2)
(1,-2)

(2)判断点A是否在抛物线E上;
(3)求n的值.
【发现】
通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,这个定点的坐标是
A(2,0)、B(-1,6)
A(2,0)、B(-1,6)

【应用1】
二次函数y=-3x2+5x+2是二次函数y=x2-3x+2和一次函数y=-2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.
【应用2】
以AB为一边作矩形ABCD,使得其中一个顶点落在y轴上,若抛物线E经过点A、B、C、D中的三点,求出所有符合条件的t的值.

查看答案和解析>>

某蔬菜公司收购蔬菜进行销售的获利情况如表所示:
 销售方式  直接销售  粗加工后销售  精加工后销售
 每吨获利(元)  100  250  450
现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行).
(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:
 销售方式  全部直接销售  全部粗加工后销售  尽量精加工,剩余部分直接销售
 获利(元)
14000
14000
35000
35000
 
51800
51800
 
(2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间?
(3)如果要求蔬菜都要加工后销售,设t吨蔬菜进行精加工,加工销售的总利润为y(元),写出y与t之间的函数关系式?若公司获利不能少于42200元,问至少将多少吨蔬菜进行精加工?

查看答案和解析>>

附加题
对于二次函数y=-x2+8x-6和一次函数y=3x-4,把y=t(-x2+8x-6)+(2-3t)(3x-4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线C.现有点A(2,4)和抛物线C上的点B(-3,n),请完成下列任务:
【尝试】
(1)判断点A是否在抛物线C上;
(2)求n的值
【发现】
     通过(1)和(2)的演算可知,对于t取任何不为零的实数,抛物线C总过固定的两点,则这两点的坐标分别是
(2,4),(-3,-26)
(2,4),(-3,-26)

【应用】
     二次函数y=4x2-6x+9是二次函数y=-x2+8x-6和一次函数y=3x-4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.

查看答案和解析>>

对于二次函数y=x2-3x+2和一次函数y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.
现有点A(2,0)和抛物线E上的点B(-1,n),请完成下列任务:
【尝试】
(1)当t=2时,抛物线E的顶点坐标是______;
(2)判断点A是否在抛物线E上;
(3)求n的值.
【发现】
通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,这个定点的坐标是______.
【应用1】
二次函数y=-3x2+5x+2是二次函数y=x2-3x+2和一次函数y=-2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.
【应用2】
以AB为一边作矩形ABCD,使得其中一个顶点落在y轴上,若抛物线E经过点A、B、C、D中的三点,求出所有符合条件的t的值.

查看答案和解析>>

(本题满分12分)学完二次函数后,同学们对二次函数的图象抛物线产生了浓厚兴趣,在一次数学实验课上,孔明同学用一把宽3 cm且带刻度的矩形直尺对抛物线进行了如下测量:

   ①量得OA=3 cm;

   ②把直尺的左边与抛物线的对称轴重合,使得直尺左下端点与抛物线的顶点重合(如图①),测得抛物线与直尺右边的交点C的刻度读数为4.5.

   请完成下列问题:

   1.(1)求抛物线的对称轴.

   2.(2)求抛物线所对应的函数关系式.

   3.(3)将图中的直尺(足够长)沿水平方向向右平移到点A的右边(如图②),直尺的两边交x轴于点H、G,交抛物线于点E、F.求证:S梯形EFGH=(EF2-9).

 

查看答案和解析>>


同步练习册答案