平面直角坐标系(rectangular coordinate system): 平面内画两条互相垂直.原点重合的数轴.组成平面直角坐标系. 水平的数轴称为x轴或横轴.习惯上取向右为正方向, 竖直的数轴称为y轴或纵轴.取向上方向为正方向, 两个坐标轴的交点为平面直角坐标系的原点. 查看更多

 

题目列表(包括答案和解析)

探索勾股定理时,我们发现“用不同的方式表示同一图形的面积”可以解决线段和(或差)的有关问题,这种方法称为面积法.请你运用面积法求解下列问题:在等腰三角形ABC中,AB=AC,BD为腰AC上的高.
(1)若BD=h,M是直线BC上的任意一点,M到AB、AC的距离分别为h1,h2
A、若M在线段BC上,请你结合图形①证明:h1+h2=h;
B、当点M在BC的延长线上时,h1,h2,h之间的关系为
 
.(请直接写出结论,不必证明)
(2)如图②,在平面直角坐标系中有两条直线l1:y=
34
x+6;l2:y=-3x+6.若l2上的一点M到l1的距离是3,请你利用以上结论求解点M的坐标.
精英家教网

查看答案和解析>>

已知抛物线y=-
23
(x+2)2+k与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,C点在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根.
(1)求A、B、C三点的坐标;
(2)在平面直角坐标系内画出抛物线的大致图象并标明顶点坐标;
(3)连AC、BC,若点E是线段AB上的一个动点(与A、B不重合),过E作EF∥AC交BC于F,连CE,设AE=m,△CEF的面积为S,求S与m的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上说明S是否存在最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

如图是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯.若把拱桥的截面图放在平面直角坐标系中(如图).
精英家教网精英家教网
(1)求抛物线的解析式;(2)求两盏景观灯之间的水平距离.

查看答案和解析>>

19、如图,在平面直角坐标系中,点A的坐标为(2,4),点B的坐标为(3,0).把△AOB沿射线OB的方向平移2个单位,其中A、O、B的对应点分别为D、E、F.
(1)请你画出平移后的△DEF;
(2)求线段OA在平移过程中扫过的面积.

查看答案和解析>>

在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(-3,0)、B(1,0)精英家教网,过顶点C作CH⊥x轴于点H.
(1)直接填写:a=
 
,b=
 
,顶点C的坐标为
 

(2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;
(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.

查看答案和解析>>


同步练习册答案