(四)板书设计 课题 观察函数图象,回答提出的问题 用图象法解二元一次方程组 投影幕 查看更多

 

题目列表(包括答案和解析)

阅读材料,解答问题.
利用图象法解一元二次不等式:x2+2x-3<0.
解:设y=x2+2x-3,则y是x的二次函数.∵a=1>0,
∴抛物线开口向上.
又∵当y=0时,x2+2x-3=0,解得x1=1,x2=-3.
∴由此得抛物线y=x2+2x-3的大致图象如图所示.
观察函数图象可知:当-3<x<1时,y<0.
∴x2+2x-3<0的解集是:-3<x<1时.
(1)观察图象,直接写出一元二次不等式:x2+2x-3>0的解集是
x<-3或x>1
x<-3或x>1

(2)仿照上例,用图象法解一元二次不等式:-2x2-4x+6>0.
(3)不等式2x2-4x+6<0有解吗?若有,求出其解集;若没有请结合图象说明理由.

查看答案和解析>>

如图,反比例函数y=
2x
的图象与一次函数y=kx+b的图象交于点A(m,2),点B(-2,n ),一次函数图象与y轴的交点为C.
(1)求一次函数解析式;
(2)求△AOC的面积;
(3)观察函数图象,写出当x取何值时,一次函数的值比反比例函数的值小?

查看答案和解析>>

如图,在平面直角坐标系中,点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点;点A2是以原点O为圆心,半径为3的圆与过点(0,2)且平行于x轴的直线l2的一个交点;点A3是以原点O为圆心,半径为4的圆与过点(0,3)且平行于x轴的直线l3的一个交点;点A4是以原点O为圆心,半径为5的圆与过点(0,精英家教网4)且平行于x轴的直线l4的一个交点
(1)分别求出A1、A2、A3、A4四点的坐标;
(2)按照这样的规律进行下去,猜想、归纳点An的坐标为
 

(3)A1、A2、A3、A4四点在同一条直线上吗?如果在,求出该直线的解析式,如果不在,试判断这四个点所在的函数图象,并证明你的结论.

查看答案和解析>>

(2010•淮北模拟)阅读材料,解答问题.
例   用图象法解一元二次不等式:.x2-2x-3>0
解:设y=x2-2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.
又∵当y=0时,x2-2x-3=0,解得x1=-1,x2=3.
∴由此得抛物线y=x2-2x-3的大致图象如图所示.
观察函数图象可知:当x<-1或x>3时,y>0.
∴x2-2x-3>0的解集是:x<-1或x>3.
(1)观察图象,直接写出一元二次不等式:x2-2x-3>0的解集是
x<-1或x>3
x<-1或x>3

(2)仿照上例,用图象法解一元二次不等式:x2-1>0.

查看答案和解析>>

(2012•南昌模拟)绘制函数y=x+
1
x
的图象,我们经历了如下过程:确定自变量x的取值范围是x≠0; 列表--描点--连线,得到该函数的图象如图所示.
x -4 -3 -2 -1 -
1
2
-
1
3
-
1
4
1
4
1
3
1
2
1 2 3 4
y -4
1
4
-3
1
3
-2
1
2
-2 -2
1
2
-3
1
3
-4
1
4
4
1
4
3
1
3
2
1
2
2 2
1
2
3
1
3
4
1
4
观察函数图象,回答下列问题:
(1)函数图象在第
一、三
一、三
象限;
(2)函数图象的对称性是
C
C

A.既是轴对称图形,又是中心对称图形     B.只是轴对称图形,不是中心对称图形
C.不是轴对称图形,而是中心对称图形     D.既不是轴对称图形,也不是中心对称图形
(3)在x>0时,当x=
1
1
时,函数y有最
(大,小)值,且这个最值等于
2
2

在x<0时,当x=
-1
-1
时,函数y有最
(大,小)值,且这个最值等于
-2
-2

(4)方程x+
1
x
=-2x+1
是否有实数解?说明理由.

查看答案和解析>>


同步练习册答案