我们知道:平行四边形的面积=(底边)×(这条底边上的高).
如图,四边形ABCD都是平行四边形,AD∥BC,AB∥CD,设它的面积为S.
(1)如图①,点M为AD上任意一点,则△BCM的面积S
1=
S,
△BCD的面积S
2与△BCM的面积S
1的数量关系是
S1=S2
S1=S2
.
(2)如图②,设AC、BD交于点O,则O为AC、BD的中点,试探究△AOB的面积与△COD的面积之和S
3与平行四边形的面积S的数量关系.
(3)如图③,点P为平行四边形ABCD内任意一点时,记△PAB的面积为Sˊ,△PCD的面积为S〞,平行四边形ABCD的面积为S,猜想得Sˊ、S〞的和与S的数量关系式为
.
(4)如图④,已知点P为平行四边形ABCD内任意一点,△PAB的面积为3,△PBC的面积为7,求△PBD的面积.