2.在菱形的判定方法的探索与综合应用中.培养学生的观察能力.动手能力及逻辑思维能力. 查看更多

 

题目列表(包括答案和解析)

如图,ABCD为菱形,∠ABC=β,有一个半径为r的⊙O,圆心O在菱形的内部,且到B点的距离为a,当圆心O在菱形内部运动时,⊙O的半径和圆心到B点的距离a都发生变化.
(1)当满足什么条件时,圆心O在菱形内部运动时⊙O与菱形的两边BA、BC(或BA、BC的延长线)都相切?
(2)当圆心O在菱形内部运动时,请你求出满足什么条件时⊙O与菱形的两边BA、BC(精英家教网或BA、BC的延长线)都相交、相离的所有情况.

查看答案和解析>>

(2012•自贡)如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.
(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;
(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.

查看答案和解析>>

如图1,菱形ABOC的对角线OA、BC交于点D,∠BOC=60°,OA=2
3
,E为AC边中点,BE与OA交于点F,点P从点O(包含顶点O)开始沿OA方向以每秒2
3
个单位长度的速度运动,同时,点Q从点C(包含顶点C)出发沿CB方向以每秒1个单位长度的速度运动,当P到达点A时,P,Q同时停止运动,设运动时间为x秒.
(1)若记以P、B、E、Q为顶点的四边形面积为S,分别求出点P在线段OD(不含点D)和在线段AF(不含点F)上时,S关于x的函数关系式,并写出相应的自变量x的取值范围.
(2)若以P、B、E、Q为顶点的四边形是梯形,求x的值.
(3)如图2,若点M、N分别在菱形的边OC、AC上,且∠MBN=60°,∠MBN在∠OBA内部绕着点B旋转的过程中,请你探究OM+AN的值是否发生变化?若不变,求出其值;若发生变化,请说明理由.

查看答案和解析>>

如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,△CEF的面积最大值是(  )

查看答案和解析>>

23、已知:正方形ABCD的边长为a,P是边CD上一个动点不与C、D重合,CP=b,以CP为一边在正方形ABCD外作正方形PCEF,连接BF、DF.


观察计算:
(1)如图1,当a=4,b=1时,四边形ABFD的面积为
16

(2)如图2,当a=4,b=2时,四边形ABFD的面积为
16

(3)如图3,当a=4,b=3时,四边形ABFD的面积为
16

探索发现:
(4)根据上述计算的结果,你认为四边形ABFD的面积与正方形ABCD的面积之间有怎样的关系?证明你的结论;
综合应用:
(5)农民赵大伯有一块正方形的土地(如图5),由于修路被占去一块三角形的地方△BCE,但决定在DE的右侧补给赵大伯一块土地,补偿后的土地为四边形ABMD,且四边形ABMD的面积与原来正方形土地的面积相等,M、E、B三点要在一条直线上,请你画图说明,如何确定M点的位置.

查看答案和解析>>


同步练习册答案