(二)考点聚集: 1.全等三角形的概念: 2.全等三角形的判定: SAS公理, ASA公理, AAS公理, SSS公理, HL公理, 3.全等三角形的性质: 全等三角形的对应边.对应角.对应边上的高.中线.对应角的平分线相等, 4.证明两三角形全等的思路: (1)若已知两边:找两边的夹角对应相等←---SAS 找第三边对应相等←---SSS 找直角←--- HL或SAS (2)若已知一边一角 : (3)已知两角 查看更多

 

题目列表(包括答案和解析)

15、在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等、在上述定理中,存在逆定理的是
①、③、④、⑤
(填序号)

查看答案和解析>>

【考点】菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质.

【分析】根据菱形的四条边都相等,先判定△ABD是等边三角形,再根据菱形的性质可得∠BDF=∠C=60°,再求出DF=CE,然后利用“边角边”即可证明△BDF≌△DCE,从而判定①正确;根据全等三角形对应角相等可得∠DBF=∠EDC,然后利用三角形的一个外角等于与它不相邻的两个内角的和可以求出∠DMF=∠BDC=60°,再根据平角等于180°即可求出∠BMD=120°,从而判定②正确;根据三角形的一个外角等于与它不相邻的两个内角的和以及平行线的性质求出∠ABM=∠ADH,再利用“边角边”证明△ABM和△ADH全等,根据全等三角形对应边相等可得AH=AM,对应角相等可得∠BAM=∠DAH,然后求出∠MAH=∠BAD=60°,从而判定出△AMH是等边三角形,判定出③正确;根据全等三角形的面积相等可得△AMH的面积等于四边形ABMD的面积,然后判定出④错误.

【解答】在菱形ABCD中,∵AB=BD,

∴AB=BD=AD,

∴△ABD是等边三角形,

∴根据菱形的性质可得∠BDF=∠C=60°,

∵BE=CF,

∴BC-BE=CD-CF,

即CE=DF,

在△BDF和△DCE中,CE=DF;∠BDF=∠C=60°;BD=CD,

∴△BDF≌△DCE(SAS),故①小题正确;

∴∠DBF=∠EDC,

∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,

∴∠BMD=180°-∠DMF=180°-60°=120°,故②小题正确;

∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,

∴∠DEB=∠ABM,

又∵AD∥BC,

∴∠ADH=∠DEB,

∴∠ADH=∠ABM,

在△ABM和△ADH中,AB=AD;∠ADH=∠ABM;DH=BM,

∴△ABM≌△ADH(SAS),

∴AH=AM,∠BAM=∠DAH,

∴∠MAH=∠MAD+∠DAH=∠MAD+∠BAM=∠BAD=60°,

∴△AMH是等边三角形,故③小题正确;

∵△ABM≌△ADH,

∴△AMH的面积等于四边形ABMD的面积,

又∵△AMH的面积=AM·AM=AM2

∴S四边形ABMDAM2,S四边形ABCD≠S四边形ABMD,故④小题错误,

综上所述,正确的是①②③共3个.

故选C.

【点评】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,题目较为复杂,特别是图形的识别有难度,从图形中准确确定出全等三角形并找出全等的条件是解题的关键.

查看答案和解析>>

在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等、在上述定理中,存在逆定理的是    (填序号)

查看答案和解析>>

在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等、在上述定理中,存在逆定理的是______(填序号)

查看答案和解析>>

【考点】全等三角形的判定与性质;直角梯形;旋转的性质.

【分析】过A作AN⊥BC于N,过E作EM⊥AD,交DA延长线于M,得出四边形ANCD是矩形,推出∠DAN=90°=∠ANB=∠MAN,AD=NC=5,AN=CD,求出BN=4,求出∠EAM=∠NAB,证△EAM≌△BNA,求出EM=BN=4,根据三角形的面积公式求出即可.

【解答】过A作AN⊥BC于N,过E作EM⊥AD,交DA延长线于M,

∵AD∥BC,∠C=90°,

∴∠C=∠ADC=∠ANC=90°,

∴四边形ANCD是矩形,

∴∠DAN=90°=∠ANB=∠MAN,AD=NC=5,AN=CD,

∴BN=9-5=4,

∵∠M=∠EAB=∠MAN=∠ANB=90°,

∴∠EAM+∠BAM=90°,∠MAB+∠NAB=90°,

∴∠EAM=∠NAB,

∵在△EAM和△BNA中,∠M=∠ANB;∠EAM=∠BAN;AE=AB,

∴△EAM≌△BNA(AAS),

∴EM=BN=4,

∴△ADE的面积是×AD×EM=×5×4=10.

故选A.

【点评】本题考查了矩形的性质和判定,三角形的面积,全等三角形的性质和判定,主要考查学生运用定理和性质进行推理的能力,题目比较好,难度适中.

查看答案和解析>>


同步练习册答案