例1 已知线段AB和CD.如下图.求作一线段.使它的长度等于AB+2CD. 解 所以EF就是所求作的线段. 例2 如图.已知∠A .∠B.求作一个角.使它等于∠A+∠B. 解 所以∠CDF就是所求作的线段. 查看更多

 

题目列表(包括答案和解析)

(1)如图,AB、CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长是______.

(2)阅读材料:如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:数学公式,即三角形面积等于水平宽与铅垂高乘积的一半.

解答下列问题:
如图,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
①求抛物线和直线AB的解析式;
②点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
③点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使S△PAB=数学公式S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

附加题:
(1)如图,AB、CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长是______.

(2)阅读材料:如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半.

解答下列问题:
如图,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
①求抛物线和直线AB的解析式;
②点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
③点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使S△PAB=S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

阅读下面的题目及分析过程,并按要求进行证明.
已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE,求证:AB=CD.
分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证明AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.
现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.

图(1):延长DE到F使得EF=DE
图(2):作CG⊥DE于G,BF⊥DE于F交DE的延长线于F
图(3):过C点作CF∥AB交DE的延长线于F.

查看答案和解析>>

如图,方格纸上画有AB、CD两条线段,按下列要求作图.(保留作图痕迹,不要求写出作法)
(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;
(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.
(3)如图(3):已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.
作业宝

查看答案和解析>>

请阅读下面知识:
梯形中位线的定义:梯形两腰中点的连线,叫做梯形的中位线.如图,E,F是梯形ABCD两腰AB,CD的中点,则EF是梯形的中位线梯形中位线与两底长度的关系:梯形中位线长度等于两底长的和的一半如图:EF=
1
2
(AD+BC)利用上面的知识,完成下面题目的解答已知:直线l与抛物线M交于点A,B两点,抛物线M的对称轴为y轴,过点A,B作x轴的垂线段,垂足分别为D,C,已知A(-1,3),B(
1
2
3
2

(1)求梯形ABCD中位线的长度;
(2)求抛物线M的解析式;
(3)把抛物线M向下平移k个单位,得抛物线M1(抛物线M1的顶点保持在x轴的上方),与直线l的交点为A1,B1,同样作x轴的垂线段,垂足为D1,C1,问此时梯形A1B1C1D1的中位线的长度(设为h)与原来相比是否发生变化?若不变,说明理由.若有改变,求出h与k的函数关系式.

查看答案和解析>>


同步练习册答案