1.掌握等腰三角形的判定定理.性质定理以及斜边.直角边定理的证明. 查看更多

 

题目列表(包括答案和解析)

31、阅读下面的题目及分析过程,并按要求进行证明.
已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.
求证:AB=CD.
分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.
现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.

查看答案和解析>>

阅读下面的题目及分析过程,并按要求进行证明.
已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE,求证:AB=CD.
分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证明AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.
现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.

图(1):延长DE到F使得EF=DE
图(2):作CG⊥DE于G,BF⊥DE于F交DE的延长线于F
图(3):过C点作CF∥AB交DE的延长线于F.

查看答案和解析>>

21、如图,△ABC中,①AB=AC,②∠BAD=∠CAD,③BD=CD,④AD⊥BC.请你选择其中的两个作为条件,另两个作为结论,证明等腰三角形的“三线和一”性质定理.

查看答案和解析>>

简单的轴对称图形
(1)角是轴对称图形,它的对称轴是它的平分线所在的直线.角平分线上的点到
角的两边
角的两边
的距离相等;到一个角的两边距离相等的点,在
这个角的平分线
这个角的平分线
上.
(2)线段是轴对称图形,线段的
垂直平分线
垂直平分线
是它的一条对称轴.线段的
垂直平分线
垂直平分线
上的点到这条线段两个端点的距离相等.
到线段两端点距离相等
到线段两端点距离相等
的点,在这条线段的垂直平分线上.
轴对称和轴对称图形的区别与联系:
区别:(1)轴对称是说两个图形的位置关系,轴对称图形是说一个具有特殊形状的图形;
(2)轴对称是对两个图形说的,轴对称图形是对一个图形说的.
联系:(1)它们的定义中,都有沿某直线折叠,图形重合;
(2)如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形,反过来,把轴对称图形的两部分当作两个图形,那么这两个图形成轴对称.
提问:等腰三角形的判定与性质?

查看答案和解析>>

精英家教网“等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合”的定理是将“等腰三角形”作为一个不变的已知条件参与组合得到的三个真命题,在学习了等腰三角形的判定后,可将该定理作如下的引伸.
如图,已知△ABC,①AB=AC  ②∠1=∠2 ③AD⊥BC ④BD=DC中,若其中任意两组成立,可推出其余两组成立.
显然以上六个命题中,有三个就是“等腰三角形的三线合一定理”,而其它三个是否成立,请你证明其中一个.(注意此题的得分要依题目本身证明的难易而定,请你选择)
已知:
 

求证:
 

证明:
 

查看答案和解析>>


同步练习册答案