探索计算器求平均数的方法. 查看更多

 

题目列表(包括答案和解析)

7、阅读下面“平均数”一课的课堂教学片断,请你作简单评述.
师:学到这里,我们已经基本掌握了求平均数的一般方法.其实,在求平均数前,我们还可以先估算这个平均数的范围.请大家看这样一个例子:“一个小组有6个同学,他们的体重分别是32千克、30千克、35千克、30千克、33千克、32千克,这个小组的平均体重是多少千克?”
仔细想一想,这个小组同学的平均体重肯定比多少千克多,比多少千克少?
生1:比30千克多,比35千克要少.
生2:我也认为是这样的.
师:为什么呢?我们能否说出一个道理?
学生同桌或小组进行讨论.
师:谁先发言?
生:因为求6个同学的平均体重,可以看成是“以多补少”,就是要把最重的35千克移一些给最轻的30千克.所以这个平均数肯定不会比35千克多,比30千克少.
师:(带头鼓掌,学生也跟着鼓掌)说得好.请大家计算出结果,再与刚才的估算的平均数范围对照一下,是否对?
生:(学生各自计算:(32+30+35+30+33+32)÷6=32(千克))
师:好.这个结果说明我们刚才估算的结果是正确的.那么这个“32千克”与题目中的“32千克”意思一样吗?
生:不一样.题目中的“32千克”是一个同学的体重,结果中的“32千克”是6个同学的平均体重.
师:说得对!我们解答应用题,不但要会,而且要懂得解答结果的意思.

查看答案和解析>>

27、先阅读下面的问题:
在实际生活中常见到求平均数的问题.例如:
问题某校初一级篮球队12名同学的身高(厘米)分别如下:171,168,170,173,165,178,166,161,176,172,176,176.
求全队同学的平均身高.
解:分别将各数减去170,得1,-2,0,3,-5,8,-4,-9,6,2,6,6
这组数的平均数为:(1-2+0+3-5+8-4-9+6+2+6+6)÷12=12÷12=1
则已知数据的平均数为:170+1=171
答:全队同学的平均身高为171厘米.
通过阅读上面解决问题的方法,请利用它解决下面的问题:
(1)10筐苹果称重(千克)如下:32,26,32.5,33,29.5,31.5,33,29,30,27.5问这10筐苹果的平均重量是多少
(2)若有一组数为:a-1,a+5,a-1,a-2,a-4,a+1,a+2,这组数的平均数为

查看答案和解析>>

问题背景:在中,三边的长分别为,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即三个顶点都在小正方形的顶点处),如图所示.这样不需求的高,而借用网格就能计算出它的面积.

1.请你将的面积直接填写在横线上.__________________

思维拓展:

2.我们把上述求面积的方法叫做构图法.若三边的长分别为),请利用图的正方形网格(每个小正方形的边长为)画出相应的,并求出它的面积.

探索创新:

3.若三边的长分别为,且),试运用构图法求出这三角形的面积.

 

查看答案和解析>>

问题背景:在中,三边的长分别为,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即三个顶点都在小正方形的顶点处),如图①所示.这样不需求的高,而借用网格就能计算出它的面积.
【小题1】请你将的面积直接填写在横线上._________________________思维拓展:
【小题2】我们把上述求面积的方法叫做构图法.若 三边的长分别为),请利用图②的正方形网格(每个小正方形的边长为)画出相应的,并求出它的面积.探索创新:
【小题3】若三边的长分别为,且),试运用构图法求出这三角形的面积.

查看答案和解析>>

问题背景:在中,三边的长分别为,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即三个顶点都在小正方形的顶点处),如图①所示.这样不需求的高,而借用网格就能计算出它的面积.

1.请你将的面积直接填写在横线上._________________________思维拓展:

2.我们把上述求面积的方法叫做构图法.若 三边的长分别为),请利用图②的正方形网格(每个小正方形的边长为)画出相应的,并求出它的面积.探索创新:

3.若三边的长分别为,且),试运用构图法求出这三角形的面积.

 

查看答案和解析>>


同步练习册答案