9.A,点拨:根据题意分别计算出S1和S2即得答案. 解:∵∠A=90°.AC=8.AB=6.∴BC===10. 当以AC为轴时.AB为底面半径.S1=S侧+S底=πAB·BC+πAB^2=π×6×10+π×36=96π. 当以AB为轴时.AC为底面半径.S2=S侧+S底=80π+π×82=144π. ∴S1:S2=96π:144π=2:3.故选A. 查看更多

 

题目列表(包括答案和解析)

(2013•池州一模)我们知道:由于圆是中心对称图形,所以过圆心的任何一条直线都可以将圆分割成面积相等的两部分(如图1).
探索下列问题:
(1)在如图2给出的四个正方形中,各画出一条直线(依次是:水平方向的直线、竖直方向的直线、与水平方向成45°角的直线和任意的直线),将每个正方形都分割成面积相等的两部分;
(2)一条竖直方向的直线m以及任意的直线n,在由左向右平移的过程中,将正六边形分成左右两部分,其面积分别记为S1和S2
①请你在如图3中相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接);
②请你在如图4中分别画出反映S1与S2三种大小关系的直线n,并在相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接).
(3)是否存在一条直线,将一个任意的平面图形(如图5)分割成面积相等的两部分?请简略说出理由.

查看答案和解析>>

18、探索下列问题:
(1)在图1给出的四个正方形中,各画出一条直线(依次是:水平方向的直线、竖直方向的直线、与水平方向成45°角的直线和任意的直线),将每个正方形都分割成面积相等的两部分;
(2)一条竖直方向的直线m以及任意的直线n,在由左向右平移的过程中,将正六边形分成左右两部分,其面积分别记为S1和S2.①请你在图2中相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接);
②请你在图3中分别画出反映S1与S2三种大小关系的直线n,并在相应图形下方的横线上分别填写S1与S2的数量关系式(用“<”,“=”,“>”连接).
(3)是否存在一条直线,将一个任意的平面图形(如图4)分割成面积相等的两部分,请简略说出理由.

查看答案和解析>>

17、为了增加游人观赏花园风景的路程,将平行四边形花园中形如图1的恒宽为a米的直路改为形如图2恒宽为a米的曲路,道路改造前后各余下的面积(即图中阴影部分面积)分别记为S1和S2,则S1
=
S2(填“>”“=”或“<”).

查看答案和解析>>

如图,Rt△ABC中,∠ACB=90°.在AB的同侧分别以AB、BC、AC为直径作三个半圆.图中阴影部分的面积分别记作为S1和S2
(1)求证:S1+S2=S△ABC
(2)若Rt△ABC的周长是2+
6
,斜边长为2,求图中阴影部分面积的和.

查看答案和解析>>

为了增加游人观赏花园风景的路程, 将平行四边形花园中形如图1的恒宽为a米的直路改为形如图2恒宽为a米的曲路, 道路改造前后各余下的面积

(即图中阴影部分面积)分别记为S1S2,则S1________S2(填“>”“=”或“<”).

 

查看答案和解析>>


同步练习册答案