18.解:因为S△ABC=S△A’B’C’, S△ABD=S△A’B’D’,所以S阴影=S扇形CAC’-S扇形DAD’=·π·11502- ·π·352≈9420cm2. 查看更多

 

题目列表(包括答案和解析)

如图(1)所示,△ABC是直角三角形,BD是斜边上的高,若AB=3,BC=4,AC=5,求BD的长.
解:因为S△ABC=
1
2
AB•BC,S△ABC=
1
2
AC•BD,所以
1
2
AB•BC=
1
2
AC•BD,
所以3×4=5BD,则BD=
12
5

以上求解的基本思想是以三角形的面积不变为相等关系,通过从不同角度表示同一三角形的面积来发现三角形各边及其上的高的关系,这种解决问题的方法我们常称为“面积法”,根据你的理解回答下面的问题:
如图(2)所示,△ABC中,AD,CE都是△ABC的高,且AD=3cm,CE=2cm,AB=6精英家教网cm,求CB的长.

查看答案和解析>>

如图(1)所示,△ABC是直角三角形,BD是斜边上的高,若AB=3,BC=4,AC=5,求BD的长.
解:因为S△ABC=数学公式AB•BC,S△ABC=数学公式AC•BD,所以数学公式AB•BC=数学公式AC•BD,
所以3×4=5BD,则BD=数学公式
以上求解的基本思想是以三角形的面积不变为相等关系,通过从不同角度表示同一三角形的面积来发现三角形各边及其上的高的关系,这种解决问题的方法我们常称为“面积法”,根据你的理解回答下面的问题:
如图(2)所示,△ABC中,AD,CE都是△ABC的高,且AD=3cm,CE=2cm,AB=6cm,求CB的长.

查看答案和解析>>

如图,在三角形ABC中∠1+∠2=180°,∠3=∠B.以下是某同学说明∠ADE=∠ACB的推理过程或理由,精英家教网请你在横线上补充完整其推理过程或理由.
解:因为∠1+∠2=180°(
 

∠2+∠4=180°
所以∠1=∠4 (
 

所以AB∥DF
 

所以∠3=∠5
 

又因为∠3=∠B
 

所以∠5=∠B(
 

所以DE∥BC(
 

所以∠ADE=∠ACB
 

查看答案和解析>>

阅读并填空:两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF的交点.试说明不重叠的两部分△AOF与△DOC全等的理由.
解:因为两三角形纸板完全相同(已知),
所以AB=DB,
BF=BC
BF=BC
∠A=∠D
∠A=∠D
 (全等三角形对应边、对应角相等).
所以AB-BF=
BD-BC
BD-BC
(等式性质).
即AF=
CD
CD
(等式性质).
(完成以下说理过程)

查看答案和解析>>

阅读并填空:
如图,在△ABC中,已知AB=AC,AD是∠A的平分线,E是AD上一点,那么BE=CE.
解:因为AB=AC,AD是∠A的平分线(已知)
所以BD=
CD
CD
,∠BDE=
∠CDE
∠CDE
=90° (
等腰三角形的性质
等腰三角形的性质

在△BDE与△CDE中
BD=CD
BD=CD

∠BDE=∠CDE
∠BDE=∠CDE

DE=DE
DE=DE

所以△BDE≌△CDE (
SAS
SAS

所以BE=CE (
全等三角形的性质
全等三角形的性质
).

查看答案和解析>>


同步练习册答案