15.当m取任何实数时.抛物线y=-2(x+m)2-m2的顶点所在的曲线为( ) A.y=x2 B.y=-x2 C.y=x2 D.y=-x2 查看更多

 

题目列表(包括答案和解析)

阅读材料:

当抛物线的关系式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2m-1,①

y=(x-m)2+2m-1.

m的值变化时,xy的值也随之变化,因而y值也随x值的变化而变化.将③代入④,得y=2x-1 ⑤.可见,不论m取任何实数,抛物线顶点的纵坐标y和横坐标x都满足关系式y=2x-1

解答问题:(1)在上述过程中,由①到②所用的数学方法是                           .其中运用了          公式;由③④得到⑤所用的数学方法是                     .

2)根据阅读材料提供的方法,确定抛物线y=x2-2mx+2m2-3m+1顶点的纵坐标y与横坐标x之间的关系式.

查看答案和解析>>

阅读材料:
当抛物线的关系式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化。
例如:由抛物线y=x2-2mx+m2+2m-1,①
有y=(x-m)2+2m-1②
∴抛物线的顶点坐标为(m,2m-1),即
当m的值变化时,x、y的值也随之变化,因而y值也随x值的变化而变化,将③代入④,得y=2x-1⑤,可见,不论m取任何实数,抛物线顶点的纵坐标y和横坐标x都满足关系式y=2x-1,
解答问题:
(1)在上述过程中,由①到②所用的数学方法是____,其中运用了____公式;由③④得到⑤所用的数学方法是____;
(2)根据阅读材料提供的方法,确定抛物线y=x2-2mx+2m2-3m+1顶点的纵坐标y与横坐标x之间的关系式____。

查看答案和解析>>

当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2m-1①有y=(x-m)2+2m-1②,

所以抛物线顶点坐标为(m,2m-1),即x=m③,y=2m-1④.

当m的值变化时,x,y的值也随之变化,因而y的值也随x值的变化而变化.

将③代入④,得y=2x-1⑤.可见,不论m取任何实数,抛物线顶点的纵坐标y和横坐标x都满足关系式:y=2x-1;

根据上述阅读材料提供的方法,确定点(-2m, m-1)满足的函数关系式为_______.

(2)根据阅读材料提供的方法,确定抛物线顶点的纵坐标y与横坐标x之间的关系式.

 

查看答案和解析>>

当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2m-1①有y=(x-m)2+2m-1②,
所以抛物线顶点坐标为(m,2m-1),即x=m③,y=2m-1④.
当m的值变化时,x,y的值也随之变化,因而y的值也随x值的变化而变化.
将③代入④,得y=2x-1⑤.可见,不论m取任何实数,抛物线顶点的纵坐标y和横坐标x都满足关系式:y=2x-1;
根据上述阅读材料提供的方法,确定点(-2m, m-1)满足的函数关系式为_______.
(2)根据阅读材料提供的方法,确定抛物线顶点的纵坐标y与横坐标x之间的关系式.

查看答案和解析>>

当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2m-1①有y=(x-m)2+2m-1②,
所以抛物线顶点坐标为(m,2m-1),即x=m③,y=2m-1④.
当m的值变化时,x,y的值也随之变化,因而y的值也随x值的变化而变化.
将③代入④,得y=2x-1⑤.可见,不论m取任何实数,抛物线顶点的纵坐标y和横坐标x都满足关系式:y=2x-1;
根据上述阅读材料提供的方法,确定点(-2m, m-1)满足的函数关系式为_______.
(2)根据阅读材料提供的方法,确定抛物线顶点的纵坐标y与横坐标x之间的关系式.

查看答案和解析>>


同步练习册答案