2.难点:要求学生善于将某些实际问题中的数量关系.归结为直角三角形中元素之间的关系.从而利用所学知识把实际问题解决. 查看更多

 

题目列表(包括答案和解析)

生活中,经常用
符号
符号
表示某种意义;在数学中,经常用
字母
字母
表示数.用字母表示数可以简明地描述许多实际问题中的
数量关系
数量关系

查看答案和解析>>

某班同学“五•一”期间组织外出爬山活动,花了230元租了一辆客车,如果参加活动的同学每人交7元租车费还不够,你明白这句话的含义吗?
典例分析:
例1在公路上,我们可以看到以下几种交通标志(如图),它们有着不同的意义.如果设汽车载重量为x吨,宽度为k米,高度为h米,速度为y千米/时,请你用不等式表示下列各种标志的意义.
精英家教网

思路分析:由题意可知,限重、限宽、限高、限速中的“限”字的意义就是不超过,也就是“≤”的意义.这样,该题即可迎刃而解.
解:x≤5.5   k≤2   h≤3.5   y≤30
方法点拨:生活中的各种标志图、徽标等信息,现已成为考试中的一种素材,解决这类题目,需要将信息转化为数学语言,比如将“大于”“超过”“不超过”“非负数”“不大于”等等,准确“翻译”为数学符号.通过本题可以使我们认识到关注身边的数学的重要性.
例2用适当的不等式表示下列关系:
(1)x的4倍与2的和是非负数,可表示为
 

(2)育才中学七年级一班学生数不到35人,设该班学生有x人,可表示为
 

(3)人的寿命可超过120岁.设人的寿命为x岁,则可表示为
 

(4)小林家有4口人,人均住房面积不足15平方米,则小林家的总住面积y平方米可表示为
 

思路分析:(1)中的“非负数”即“≥0”的数;(2)中的“不到”即“<”的意思;(3)中的“超过”即“>”的意思;(4)中的“不足”即“<”的意思.
答案:(1)4x+2≥0  (2)x<35  (3)x>120  (4)y<60
方法点拨:做这种类型的题时,要善于把实际问题中的一些“不到”“大于”“超过”“不小于”等数学术语,准确迅速地转化为数学符号.此类题是为学生以后列不等式解应用题做铺垫的,所以必须掌握好.

查看答案和解析>>

某班同学“五•一”期间组织外出爬山活动,花了230元租了一辆客车,如果参加活动的同学每人交7元租车费还不够,你明白这句话的含义吗?
典例分析:
例1在公路上,我们可以看到以下几种交通标志(如图),它们有着不同的意义.如果设汽车载重量为x吨,宽度为k米,高度为h米,速度为y千米/时,请你用不等式表示下列各种标志的意义.


思路分析:由题意可知,限重、限宽、限高、限速中的“限”字的意义就是不超过,也就是“≤”的意义.这样,该题即可迎刃而解.
解:x≤5.5  k≤2  h≤3.5  y≤30
方法点拨:生活中的各种标志图、徽标等信息,现已成为考试中的一种素材,解决这类题目,需要将信息转化为数学语言,比如将“大于”“超过”“不超过”“非负数”“不大于”等等,准确“翻译”为数学符号.通过本题可以使我们认识到关注身边的数学的重要性.
例2用适当的不等式表示下列关系:
(1)x的4倍与2的和是非负数,可表示为______.
(2)育才中学七年级一班学生数不到35人,设该班学生有x人,可表示为______.
(3)人的寿命可超过120岁.设人的寿命为x岁,则可表示为______.
(4)小林家有4口人,人均住房面积不足15平方米,则小林家的总住面积y平方米可表示为______.
思路分析:(1)中的“非负数”即“≥0”的数;(2)中的“不到”即“<”的意思;(3)中的“超过”即“>”的意思;(4)中的“不足”即“<”的意思.
答案:(1)4x+2≥0 (2)x<35 (3)x>120 (4)y<60
方法点拨:做这种类型的题时,要善于把实际问题中的一些“不到”“大于”“超过”“不小于”等数学术语,准确迅速地转化为数学符号.此类题是为学生以后列不等式解应用题做铺垫的,所以必须掌握好.

查看答案和解析>>

(2011•新华区一模)我们知道:根据二次函数的图象,可以直接确定二次函数的最大(小)值;根据“两点之间,线段最短”,并运用轴对称的性质,可以在一条直线上找到一点,使得此点到这条直线同侧两定点之间的距离之和最短.
这种数形结合的思想方法,非常有利于解决一些数学和实际问题中的最大(小)值问题.请你尝试解决一下问题:
(1)在图1中,抛物线所对应的二次函数的最大值是
4
4

(2)在图2中,相距3km的A、B两镇位于河岸(近似看做直线l)的同侧,且到河岸的距离AC=1千米,BD=2千米,现要在岸边建一座水塔,分别直接给两镇送水,为使所用水管的长度最短,请你:
①作图确定水塔的位置;
②求出所需水管的长度(结果用准确值表示)
(3)已知x+y=6,求
x2+9
+
y2+25
的最小值;
此问题可以通过数形结合的方法加以解决,具体步骤如下:
①如图3中,作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,使得CA=
3
3
,DB=
5
5

②在AB上取一点P,可设AP=
x
x
,BP=
y
y

x2+9
+
y2+25
的最小值即为线段
PC
PC
和线段
PD
PD
长度之和的最小值,最小值为
10
10

查看答案和解析>>

(2013•和平区一模)注意:为了使同学们更好地解答本题,我们提供了一种分析问题的方法,你可以依据这个方法要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.
“丰收1号”油菜籽的平均每公顷产量为2400kg,含油率为40%.“丰收2号”油菜籽比“丰收1号”的平均每公顷产量提高了300kg,含油率提高了10个百分点,某村去年种植“丰收1号”油菜,今年改种“丰收2号”油菜,虽然种植面积比去年减少3公顷,但是所产油菜籽的总产油量比去年提高了3750kg.这个村去年和今年种植油菜的面积各是多少公顷?
注:本题中含油率=
产油量
油菜籽产量
×100%

(1)分析:根据问题中的数量关系,用含x的式子填表:
种植面积(公顷) 每公顷产量(kg) 含油率 总产油量(kg)
去年 x 2400 40%
2400x•40%
2400x•40%
今年
x-3
x-3
2400+300 40%+10%
(2400+300)(x-3)•(40%+10%)
(2400+300)(x-3)•(40%+10%)
(Ⅱ)求出问题的解.

查看答案和解析>>


同步练习册答案