⑴, ⑵当水位上升h米.桥下水面宽度为d米时.水面与抛物线交点坐标为(.h-4).(.h-4).图象一定过点∵d>0.∴d=. (3)当d=18米时.18=.得h=0.76.∴桥下水深超过2.76米时.会影响船只在桥下顺利航行. 查看更多

 

题目列表(包括答案和解析)

如图,河上有一座抛物线形状的桥洞,已知桥下的水面离桥拱顶部4米时,水面宽AB为12米,如图建立直角坐标系.
(1)求抛物线的函数解析式;
(2)当水位上升1米时,水面宽为多少米?(答案保留整数,其中
3
≈1.7

精英家教网

查看答案和解析>>

如图,有一个横截面是抛物线的运河,一次,运河管理员将一根长6m的钢管(AB)一端在运河底部A点,另一端露出水面并靠在运河边缘的B点,发现钢管4m浸没在水中(AC=4米),露出水面部分的钢管BC与水面部分的钢管BC与水面成30°的夹角(钢管与抛物线的横截面在同一平面内)
(1)以水面所在直线为x轴,建立如图所示的直角坐标系,求该运河横截面的抛物线解析式;
(2)若有一艘货船从当中通过,已知货船底部最宽处为12米,吃水深(即船底与水面的距离)为1米,此时货船是否能安全通过该运河?若能,请说明理由;若不能,则需上游开闸放水提高水位,当水位上升多少米时,货船能顺利通过运河?(船与河床之间的缝隙忽略不计)
精英家教网

查看答案和解析>>

(2009•卢湾区一模)如图,河上有一座抛物线形状的桥洞,已知桥下的水面离桥拱顶部4米时,水面宽AB为12米,如图建立直角坐标系.
(1)求抛物线的函数解析式;
(2)当水位上升1米时,水面宽为多少米?(答案保留整数,其中

查看答案和解析>>

如图,有一个横截面是抛物线的运河,一次,运河管理员将一根长6m的钢管(AB)一端在运河底部A点,另一端露出水面并靠在运河边缘的B点,发现钢管4m浸没在水中(AC=4米),露出水面部分的钢管BC与水面部分的钢管BC与水面成30°的夹角(钢管与抛物线的横截面在同一平面内)
(1)以水面所在直线为x轴,建立如图所示的直角坐标系,求该运河横截面的抛物线解析式;
(2)若有一艘货船从当中通过,已知货船底部最宽处为12米,吃水深(即船底与水面的距离)为1米,此时货船是否能安全通过该运河?若能,请说明理由;若不能,则需上游开闸放水提高水位,当水位上升多少米时,货船能顺利通过运河?(船与河床之间的缝隙忽略不计)

查看答案和解析>>

如图,有一个横截面是抛物线的运河,一次,运河管理员将一根长6m的钢管(AB)一端在运河底部A点,另一端露出水面并靠在运河边缘的B点,发现钢管4m浸没在水中(AC=4米),露出水面部分的钢管BC与水面部分的钢管BC与水面成30°的夹角(钢管与抛物线的横截面在同一平面内)
(1)以水面所在直线为x轴,建立如图所示的直角坐标系,求该运河横截面的抛物线解析式;
(2)若有一艘货船从当中通过,已知货船底部最宽处为12米,吃水深(即船底与水面的距离)为1米,此时货船是否能安全通过该运河?若能,请说明理由;若不能,则需上游开闸放水提高水位,当水位上升多少米时,货船能顺利通过运河?(船与河床之间的缝隙忽略不计)

查看答案和解析>>


同步练习册答案